

COMMON-ISDN-API

 Version 2.0

Part II

Operating Systems

4th Edition

June 2001

Author:
CAPI Association e.V.
All rights reserved

Editor:
AVM GmbH, Germany
E-mail: hj.ortmann@avm.de

4th Edition / June 2001

Publisher:
CAPI Association e.V.
http://www.capi.org/

 Contents (Part II) 3

Contents (Part II)

8 SPECIFICATIONS FOR COMMERCIAL OPERATING SYSTEMS ... 7

CAPI_GET_PROFILE .. 9
8.1 MS-DOS ... 11

8.1.1 Message Operations .. 12
8.1.1.1 CAPI_REGISTER... 12
8.1.1.2 CAPI_RELEASE... 14
8.1.1.3 CAPI_PUT_MESSAGE.. 15
8.1.1.4 CAPI_GET_MESSAGE.. 16

8.1.2 Other Functions... 17
8.1.2.1 CAPI_SET_SIGNAL .. 17
8.1.2.2 CAPI_GET_MANUFACTURER ... 19
8.1.2.3 CAPI_GET_VERSION ... 20
8.1.2.4. CAPI_GET_SERIAL_NUMBER ... 21
8.1.2.5 CAPI_GET_PROFILE .. 22
8.1.2.6 CAPI_MANUFACTURER ... 23

8.2 WINDOWS 3.X (APPLICATION LEVEL).. 25
8.2.1 Message Operations .. 26

8.2.1.1 CAPI_REGISTER... 26
8.2.1.2 CAPI_RELEASE... 28
8.2.1.3 CAPI_PUT_MESSAGE.. 29
8.2.1.4 CAPI_GET_MESSAGE.. 30

8.2.2 Other Functions... 31
8.2.2.1 CAPI_SET_SIGNAL .. 31
8.2.2.2 CAPI_GET_MANUFACTURER ... 33
8.2.2.3 CAPI_GET_VERSION ... 34
8.2.2.4 CAPI_GET_SERIAL_NUMBER ... 35
8.2.2.5 CAPI_GET_PROFILE .. 36
8.2.2.6 CAPI_INSTALLED .. 37

8.3 OS/2 (APPLICATION LEVEL) .. 39
8.3.1 Message Operations .. 40

8.3.1.1 CAPI_REGISTER... 40
8.3.1.2 CAPI_RELEASE... 42
8.3.1.3 CAPI_PUT_MESSAGE.. 43
8.3.1.4 CAPI_GET_MESSAGE.. 44

8.3.2 Other Functions... 45
8.3.2.1 CAPI_SET_SIGNAL .. 45
8.3.2.2 CAPI_GET_MANUFACTURER ... 47
8.3.2.3 CAPI_GET_VERSION ... 48
8.3.2.4 CAPI_GET_SERIAL_NUMBER ... 49
8.3.2.5 CAPI_GET_PROFILE .. 50
8.3.2.6 CAPI_INSTALLED .. 51

8.4 OS/2 (DEVICE DRIVER LEVEL) .. 53
8.4.1 Message Operations .. 55

8.4.1.1 CAPI_REGISTER... 55
8.4.1.2 CAPI_RELEASE... 57
8.4.1.3 CAPI_PUT_MESSAGE.. 58
8.4.1.4 CAPI_GET_MESSAGE.. 59

8.4.2 Other Functions... 60
8.4.2.1 CAPI_SET_SIGNAL .. 60
8.4.2.2 CAPI_GET_MANUFACTURER ... 62
8.4.2.3 CAPI_GET_VERSION ... 63
8.4.2.4 CAPI_GET_SERIAL_NUMBER ... 64
8.4.2.5 CAPI_GET_PROFILE .. 65

8.5 UNIX... 67
8.5.1 Message Operations .. 68

4 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.5.1.1 CAPI_REGISTER... 68
8.5.1.2 CAPI_RELEASE... 70
8.5.1.3 CAPI_PUT_MESSAGE.. 71
8.5.1.4 CAPI_GET_MESSAGE.. 72

8.5.2 Other Functions... 73
8.5.2.1 CAPI_GET_MANUFACTURER ... 73
8.5.2.2 CAPI_GET_VERSION ... 74
8.5.2.3 CAPI_GET_SERIAL_NUMBER ... 75
8.5.2.4 CAPI_GET_PROFILE .. 76

8.6 NETWARE.. 77
8.6.1 Message Operations .. 80

8.6.1.1 CAPI_Register... 80
CAPI_ReceiveNotify .. 82
8.6.1.2 CAPI_Release.. 83
8.6.1.3 CAPI_PutMessage... 84
8.6.1.4 CAPI_GetMessage .. 85

8.6.2 Other Functions... 86
8.6.2.1 CAPI_GetManufacturer... 86
8.6.2.2 CAPI_GetVersion.. 87
8.6.2.3 CAPI_GetSerialNumber .. 88
8.6.2.4 CAPI_GetProfile ... 89

8.7 WINDOWS NT (APPLICATION LEVEL).. 91
8.8 WINDOWS NT (DEVICE DRIVER LEVEL).. 93
8.9 WINDOWS 95 (APPLICATION LEVEL) ... 95

8.9.1 DOS-based Applications.. 95
8.9.2 Windows 3.x-based Applications (16-bit) .. 95
8.9.3 Windows 95-based Applications (32-bit)... 95

8.10 WINDOWS 95 (DEVICE DRIVER LEVEL) ... 97
8.10.1 Message Operations .. 99

8.10.1.1 CAPI_REGISTER... 99
8.10.1.2 CAPI_RELEASE .. 101
8.10.1.3 CAPI_PUT_MESSAGE.. 102
8.10.1.4 CAPI_GET_MESSAGE.. 103

8.10.2 Other Functions... 104
8.10.2.1 CAPI_SET_SIGNAL .. 104
8.10.2.2 CAPI_GET_MANUFACTURER ... 106
8.10.2.3 CAPI_GET_VERSION... 107
8.10.2.4 CAPI_GET_SERIAL_NUMBER ... 108
8.10.2.5 CAPI_GET_PROFILE .. 109
8.10.2.6 CAPI_MANUFACTURER... 110

8.11 WINDOWS 95 DEVICEIOCONTROL ... 111
8.11.1 Message Operations .. 113

8.11.1.1 CAPI_REGISTER... 113
8.11.1.2 CAPI_RELEASE .. 115
8.11.1.3 CAPI_PUT_MESSAGE.. 116
8.11.1.4 CAPI_GET_MESSAGE.. 117
8.11.1.5 CAPI_SET_SIGNAL .. 119

8.11.2 Other Functions... 120
8.11.2.1 CAPI_GET_MANUFACTURER ... 120
8.11.2.2 CAPI_GET_VERSION... 121
8.11.2.3 CAPI_GET_SERIAL_NUMBER ... 122
8.11.2.4 CAPI_GET_PROFILE .. 123

8.12 WINDOWS 98 (APPLICATION LEVEL) ... 125
8.12.1 DOS-based Applications.. 125
8.12.2 Windows 3.x-based Applications (16-bit) .. 125
8.12.3 Win32-based Applications (32-bit).. 125

8.13 WINDOWS 98 (DEVICE DRIVER LEVEL) ... 127
8.13.1 Windows 95-based Virtual Device Driver (VxD) .. 127
8.13.2 Win32 Driver Model-based Device Driver (WDM)... 127

8.14 WINDOWS 2000 (APPLICATION LEVEL) ... 129
8.15 WINDOWS 2000 (DEVICE DRIVER LEVEL) ... 131

 Contents (Part II) 5

8.16 LINUX... 133
8.16.1 Message Operations .. 134

8.16.1.1 CAPI_REGISTER... 134
8.16.1.2 CAPI_RELEASE .. 136
8.16.1.3 CAPI_PUT_MESSAGE.. 137
8.16.1.4 CAPI_GET_MESSAGE.. 138

8.16.2 Other Functions... 139
8.16.2.1 CAPI_WAIT_FOR_MESSAGE ... 139
8.16.2.2 CAPI_GET_MANUFACTURER ... 140
8.16.2.3 CAPI_GET_VERSION... 141
8.16.2.4 CAPI_GET_SERIAL_NUMBER ... 142
8.16.2.5 CAPI_GET_PROFILE .. 143
8.16.2.6 CAPI_INSTALLED.. 144
8.16.2.7 CAPI_FILENO.. 145

8.17 LINUX (KERNEL LEVEL)... 147
8.17.1 Message Operations .. 148

8.17.1.1 CAPI_REGISTER... 148
8.17.1.2 CAPI_RELEASE .. 150
8.17.1.3 CAPI_PUT_MESSAGE.. 151
8.17.1.4 CAPI_GET_MESSAGE.. 152

8.17.2 Other Functions... 153
8.17.2.1 CAPI_SET_SIGNAL .. 153
8.17.2.2 CAPI_GET_MANUFACTURER ... 154
8.17.2.3 CAPI_GET_VERSION... 155
8.17.2.4 CAPI_GET_SERIAL_NUMBER ... 156
8.17.2.5 CAPI_GET_PROFILE .. 157
8.17.2.6 CAPI_INSTALLED.. 158
8.17.2.7 CAPI_MANUFACTURER... 159

8.18 WINDOWS XP 32BIT (APPLICATION LEVEL) .. 161
8.18.1 Message Operations .. 162

8.18.1.1 CAPI_REGISTER... 162
8.18.1.2 CAPI_RELEASE .. 164
8.18.1.3 CAPI_PUT_MESSAGE.. 165
8.18.1.4 CAPI_GET_MESSAGE.. 166

8.18.2 Other Functions... 167
8.18.2.1 CAPI_WAIT_FOR_SIGNAL ... 167
8.18.2.2 CAPI_GET_MANUFACTURER ... 168
8.18.2.3 CAPI_GET_VERSION... 169
8.18.2.4 CAPI_GET_SERIAL_NUMBER ... 170
8.18.2.5 CAPI_GET_PROFILE .. 171
8.18.2.6 CAPI_INSTALLED.. 172

8.19 WINDOWS XP 64BIT (APPLICATION LEVEL) .. 173
8.20 WINDOWS XP (DEVICE DRIVER LEVEL) .. 175

8.20.1 Message Operations .. 179
8.20.1.1 CAPI_REGISTER... 179
8.20.1.2 CAPI_RELEASE .. 181
8.20.1.3 CAPI_PUT_MESSAGE.. 182
8.20.1.4 CAPI_GET_MESSAGE.. 184
8.20.1.5 CAPI_SET_SIGNAL .. 186

8.20.2 Other Functions... 187
8.20.2.1 CAPI_GET_MANUFACTURER ... 187
8.20.2.2 CAPI_GET_VERSION... 188
8.20.2.3 CAPI_GET_SERIAL_NUMBER ... 189
8.20.2.4 CAPI_GET_PROFILE .. 190

INDEX (PART II) ... 191

6 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8: Specifications for Commercial Operating Systems 7

8 SPECIFICATIONS FOR COMMERCIAL OPERATING SYSTEMS

COMMON-ISDN-API can be used with the following operating systems:

8.1 MS-DOS
8.2 Windows 3.x application level
8.3 OS/2 application level
8.4 OS/2 device driver level
8.5 UNIX
8.6 NetWare
8.7 Windows NT application level
8.8 Windows NT device driver level
8.9 Windows 95 application level
8.10 Windows 95 device driver level
8.11 Windows 95 IOCtl Access
8.12 Windows 98 application level
8.13 Windows 98 device driver level
8.14 Windows 2000 application level
8.15 Windows 2000 device driver level
8.16 Linux application level
8.17 Linux kernel level
8.18 Windows XP 32bit application layer
8.19 Windows XP 64bit application layer
8.20 Windows XP device driver level

All operating systems support the following COMMON-ISDN-API operations:

• CAPI_REGISTER Register application with COMMON-ISDN-API
• CAPI_RELEASE Release application from COMMON-ISDN-API
• CAPI_PUT_MESSAGE Transfer message to COMMON-ISDN-API
• CAPI_GET_MESSAGE Retrieve message from COMMON-ISDN-API
• CAPI_GET_MANUFACTURER Get manufacturer information from COMMON-ISDN-API
• CAPI_GET_VERSION Get version information from COMMON-ISDN-API
• CAPI_GET_SERIAL_NUMBER Get serial number of COMMON-ISDN-API
• CAPI_GET_PROFILE Get capability information from COMMON-ISDN-API

Depending on the operating system, the following COMMON-ISDN-API operations may also be available:

• CAPI_SET_SIGNAL Install call-back function
• CAPI_WAIT_FOR_SIGNAL Wait for COMMON-ISDN-API message
• CAPI_INSTALLED Check whether COMMON-ISDN-API is installed
• CAPI_MANUFACTURER Manufacturer-specific COMMON-ISDN-API operation

8 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8: Specifications for Commercial Operating Systems 9

CAPI_GET_PROFILE

CAPI_GET_PROFILE is used to obtain information on COMMON-ISDN-API’s implemented capabilities.
This operation fills in a buffer with the following structure:

Type Description
2 bytes Number of controllers installed, least significant byte first
2 bytes Number of supported B-channels, least significant byte first
4 bytes Global Options (bit field):

[0]: Internal controller supported
[1]: External equipment supported
[2]: Handset supported (external equipment must also be set)
[3]: DTMF supported
[4]: Supplementary Services supported (see Part III)
[5]: Channel allocation supported (leased lines)
[6]: Parameter B channel operation supported
[7]: Line Interconnect supported
[8]...[31]: reserved

4 bytes B1 protocols support (bit field):
[0]: 64 kbit/s with HDLC framing, always set.
[1]: 64 kbit/s bit-transparent operation with byte framing

from the network
[2]: V.110 asynchronous operation with start/stop byte

framing
[3]: V.110 synchronous operation with HDLC framing
[4]: T.30 modem for Group 3 fax
[5]: 64 kbit/s inverted with HDLC framing.
[6]: 56 kbit/s bit-transparent operation with byte framing

from the network
[7]: Modem with all negotiations
[8]: Modem asynchronous operation with start/stop byte

framing
[9]: Modem synchronous operation with HDLC framing
[10]..[31]: reserved

4 bytes B2 protocol support (bit field):
[0]: ISO 7776 (X.75 SLP), always set
[1]: Transparent
[2]: SDLC
[3]: LAPD in accordance with Q.921 for D channel X.25

(SAPI 16)
[4]: T.30 for Group 3 fax
[5]: Point-to-Point Protocol (PPP)
[6]: Transparent (ignoring framing errors of B1 protocol)
[7]: Modem error correction and compression (V.42 bis or

MNP5)
[8]: ISO 7776 (X.75 SLP) modified supporting V.42 bis

compression
[9]: V.120 asynchronous mode
[10]: V.120 asynchronous mode supporting V.42 bis
[11]: V.120 bit-transparent mode
[12]: LAPD in accordance with Q.921 including free SAPI

selection
[13]..[31]: reserved

10 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

4 bytes B3 protocol support (bit field):
[0]: Transparent, always set
[1]: T.90NL with compatibility to T.70NL in accordance with

T.90 Appendix II.
[2]: ISO 8208 (X.25 DTE-DTE)
[3]: X.25 DCE
[4]: T.30 for Group 3 fax
[5]: T.30 for Group 3 fax with extensions
[6]: reserved
[7]: Modem
[8]..[31]: reserved

24 bytes reserved for COMMON-ISDN-API use
20 bytes Manufacturer-specific information

CAPI_GET_PROFILE structure format

An application must ignore unknown bits. COMMON-ISDN-API sets every reserved field to 0.

 Chapter 8.1: MS-DOS 11

8.1 MS-DOS

As MS-DOS does not provide any multitasking facilities, COMMON-ISDN-API is incorporated into the sys-
tem as a background (terminate and stay resident) driver. The interface between the application and COMMON-
ISDN-API is implemented using a software interrupt. The vector used for this must be configurable both in
COMMON-ISDN-API and in the application. The default value for the software interrupt is 241 (0xF1). If
another value is to be used, it can be specified as a parameter when COMMON-ISDN-API is installed.

The functions described below are defined by appropriate processor register assignments in this software
interrupt interface. The return values and parameters are normally provided in registers AX and ES:BX.
Registers AX, BX, CX, DX and ES can be modified; other registers are preserved. COMMON-ISDN-API is
allowed to enable interrupts during processing of these functions.

COMMON-ISDN-API requires a maximum stack area of 512 bytes for the execution of all the functions in-
corporated. This stack space must be furnished by the application program. While processing the software
interrupt, COMMON-ISDN-API may enable and/or disable interrupts.

The software interrupt for COMMON-ISDN-API is defined according to the BIOS interrupt chaining structure.

API PROC FAR ; ISDN-API interrupt service
 JMP SHORT doit ; jump to start of routine
 DD ? ; chained interrupt
 DW 424BH ; interrupt chaining signature
 DB 80H ; first-in-chain flag
 DW ? ; reserved, should be 0
 DB 'CAPI' ; COMMON-ISDN-API signature
 DB '20' ; Version number
doit:

The characters 'CAPI20' can be requested by the application to ascertain the presence of COMMON-ISDN-
API.

The pointer specified in the messages DATA_B3_REQ and DATA_B3_IND is implemented as a FAR pointer
under MS-DOS.

Memory layout is in conformance with MS-DOS.

12 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.1.1 Message Operations

8.1.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. In doing so, the application provides COMMON-ISDN-API with a mem-
ory area. A FAR pointer to this memory area is transferred in registers ES:BX. The
size of the memory area is calculated by the following formula:

CX + (DX * SI * DI)

The size of the message buffer used to store messages is transferred in the CX register.
Setting this value too small will result in messages being lost. For a typical
application, the amount of memory required should be calculated by the following
formula:

CX = 1024 + (1024 * DX)

In the DX register, the application indicates the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional logical
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

In the SI register, the application sets the maximum number of received data blocks
that can be reported to the application simultaneously for each logical connection. The
number of simultaneously available data blocks has a decisive effect on the data
throughput in the system and should be between 2 and 7. At least two data blocks must
be specified.

In the DI register the application specifies the maximum size of the application data
block to be transmitted and received. Selection of a protocol that requires larger data
units, or attempts to transmit or receive larger data units, will result in an error
indication from COMMON-ISDN-API. The default value for the protocol ISO 7776
(X.75) is 128 octets. COMMON-ISDN-API is able to support at least up to 2048
octets.

The application ID number is returned in AX. In the event of an error, the value 0 is
returned in AX, and the cause of the error is indicated in BX.

 Chapter 8.1: MS-DOS 13

CAPI_REGISTER 0x01

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x01
ES:BX FAR pointer to a memory block provided by the application.

This memory area can (but need not) be used by COMMON-
ISDN-API to manage the message queue of the application.
In addition, COMMON-ISDN-API can (but also need not)
present the received data in this memory area.

CX Size of message buffer
DX Maximum number of Layer 3 connections
SI Number of B3 data blocks available simultaneously
DI Maximum size of a B3 data block

Return Value

Return Value Comment
AX <> 0 Application number (ApplID)
 0x0000 Registration error, cause of error in BX register
BX If AX == 0, coded as described in parameter Info, class

0x10xx

Note

If the application intends to open a maximum of one Layer 3 connection at a time and
use the standard protocols, the following register assignments are recommended:

CX = 2048, DX = 1, SI = 7, DI = 128

The resulting memory requirement is 2944 bytes.

14 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.1.1.2 CAPI_RELEASE

Description

The application uses this function to log out from COMMON-ISDN-API. The mem-
ory area indicated in the application’s CAPI_REGISTER call is released. The
application is identified by the application number in the DX register. Any errors that
occur are returned in AX.

CAPI_RELEASE 0x02

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x02
DX Application number

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Registration error, coded as described in parameter Info, class

0x11xx

 Chapter 8.1: MS-DOS 15

8.1.1.3 CAPI_PUT_MESSAGE

Description

With this function the application transfers a message to COMMON-ISDN-API. A
FAR pointer to the message is passed in the ES:BX registers. The application is
identified by the application number in the DX register. Any errors that occur are
returned in AX.

CAPI_PUT_MESSAGE 0x03

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x03
ES:BX FAR pointer to the message
DX Application number

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

Note

After returning from the CAPI_PUT_MESSAGE call, the application can re-use the
memory area of the message. The message is not modified by COMMON-ISDN-
API.

16 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.1.1.4 CAPI_GET_MESSAGE

Description

With this function the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve messages intended for the specified application
number. A FAR pointer to the message is passed in the ES:BX registers. The function
returns immediately, even if no message was queued for retrieval. Register AX
contains the corresponding error value. The application is identified by the application
number in the DX register. Any errors that occur are returned in AX.

CAPI_GET_MESSAGE 0x04

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x04
DX Application number

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx
ES:BX FAR pointer to message, if available

Note

The message may be made invalid by the next CAPI_GET_MESSAGE call.

 Chapter 8.1: MS-DOS 17

8.1.2 Other Functions

8.1.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate the use of an interrupt call-back func-
tion. A FAR pointer to an interrupt call-back function is specified in the ES:BX regis-
ters. The signaling function can be deactivated by a CAPI_SET_SIGNAL with the
register assignment ES:BX = 0000:0000. The application is identified by the applica-
tion number in the DX register. Any errors that occur are returned in the AX register.

CAPI_SET_SIGNAL 0x05

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x05
DX Application number
SI:DI Parameter to be passed to call-back function
ES:BX FAR pointer to call-back function

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

Note

The call-back function is called as an interrupt by COMMON-ISDN-API after

• any message is queued in the application's message queue,
• an announced busy condition is cleared, or
• an announced queue-full condition is cleared.

Interrupts are disabled. The call-back function must be terminated by IRET. All regis-
ters must be preserved. When the function is called, at least 32 bytes are available on
the stack.

18 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

The call-back function is called with interrupts disabled. COMMON-ISDN-API shall
not call this function recursively, even if the call-back function enables interrupts. In-
stead, the call-back function shall be called again after it returns control to
COMMON-ISDN-API.

The call-back function is allowed to use the COMMON-ISDN-API operations
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE, and CAPI_SET_SIGNAL. If it
does so, the application must take into account the fact that interrupts may be enabled
by COMMON-ISDN-API.

In the case of local confirmations (such as LISTEN_CONF), the call-back function
may be called before the operation CAPI_PUT_MESSAGE returns control to the
application.

Registers DX, SI and DI are passed to the call-back function with the same values as
the corresponding parameters to CAPI_SET_SIGNAL.

 Chapter 8.1: MS-DOS 19

8.1.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API
manufacturer identification. The application provides a FAR pointer to a data area of
64 bytes in registers ES:BX. The manufacturer identification, coded as a zero-
terminated ASCII string, is present in this data area after the function has been
executed.

CAPI_GET_MANUFACTURER 0xF0

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF0
ES:BX FAR pointer to buffer

Return Value

Return Comment
ES:BX Buffer contains manufacturer identification in ASCII. The

end of the identification is indicated by a zero byte.

20 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.1.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

CAPI_GET_VERSION 0xF1

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF1

Return Value

Return Comment
AH COMMON-ISDN-API major version: 2
AL COMMON-ISDN-API minor version: 0
DH Manufacturer-specific major number
DL Manufacturer-specific minor number

 Chapter 8.1: MS-DOS 21

8.1.2.4. CAPI_GET_SERIAL_NUMBER

Description

With this function the application obtains the (optional) serial number of COMMON-
ISDN-API. The application provides a FAR pointer to a data area of 8 bytes in
registers ES:BX. The serial number, a seven-digit number coded as a zero-terminated
ASCII string, is present in this data area after the function has been executed. If no
serial number is supplied, the serial number is an empty string.

CAPI_GET_SERIAL_NUMBER 0xF2

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF2
ES:BX FAR pointer to buffer

Return Value

Return Comment
ES:BX The (optional) serial number is a 7-digit number in plain text.

The end of the serial number is indicated by a zero byte. If no
serial number is to be used, a zero byte must be written at the
first position in the buffer.

22 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.1.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. Registers ES:BX must contain a FAR pointer to a data area of 64 bytes.
COMMON-ISDN-API copies information about implemented features, the number
of controllers and supported protocols to this buffer. Register CX contains the number
of the controller (bits 0..6) for which this information is requested. The profile
structure is described at the beginning of Chapter 8.

CAPI_GET_PROFILE 0xF3

Parameter Comment
AH Version number 20 (0x14)
AL Functional code 0xF3
CX Controller number (if 0, only number of controllers is re-

turned)
ES:BX FAR pointer to buffer

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

 Chapter 8.1: MS-DOS 23

8.1.2.6 CAPI_MANUFACTURER

Description

This function is manufacturer-specific.

CAPI_MANUFACTURER 0xFF

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xFF
Manufacturer-specific

Return Value

Return Comment
Manufacturer-specific

24 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.2: Windows 25

8.2 Windows 3.x (Application Level)

In a PC environment with the MS-DOS extension Windows, applications can access COMMON-ISDN-API
services via a DLL (Dynamic Link Library). The interface between applications and COMMON-ISDN-API is
realized as a function interface. Applications can issue COMMON-ISDN-API function calls to perform
COMMON-ISDN-API operations.

The DLL providing the function interface must be named "CAPI20.DLL". All functions exported by this library
must be called with a FAR call according to the PASCAL calling convention. This means that all parameters are
passed on the stack (the first parameter named is pushed first), and the called function must clear the stack before
it returns control to the caller.

The functions are exported under the following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI20.99
CAPI_REGISTER CAPI20.1
CAPI_RELEASE CAPI20.2
CAPI_PUT_MESSAGE CAPI20.3
CAPI_GET_MESSAGE CAPI20.4
CAPI_SET_SIGNAL CAPI20.5
CAPI_GET_MANUFACTURER CAPI20.6
CAPI_GET_VERSION CAPI20.7
CAPI_GET_SERIAL_NUMBER CAPI20.8
CAPI_GET_PROFILE CAPI20.9
CAPI_INSTALLED CAPI20.10

These functions can be called by an application as imported functions in accordance with the DLL conventions.
Whenever an application calls any function of the DLL for any purpose, it must ensure that there are at least 512
bytes available on the stack.

All pointers that are passed from the application program to COMMON-ISDN-API, or vice versa, in function
calls or in messages, are 16:16 segmented protected-mode pointers. This applies in particular to the data pointer
in DATA_B3_REQ and DATA_B3_IND messages.

In the Windows 3.x environment, the following data types are used in defining the functional interface:

WORD 16-bit unsigned integer
DWORD 32-bit unsigned integer
LPVOID 16:16 (segmented) protected-mode pointer to any memory location
LPVOID * 16:16 (segmented) protected-mode pointer to an LPVOID
LPBYTE 16:16 (segmented) protected-mode pointer to a character string
LPWORD 16:16 (segmented) protected-mode pointer to a 16-bit unsigned integer value
CAPIENTRY WORD FAR PASCAL (in accordance with the Windows DLL calling convention)

26 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.2.1 Message Operations

8.2.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections that the application can maintain concurrently. Any attempt by the
application to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

CAPIENTRY CAPI_REGISTER (WORD MessageBufferSize,
WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDataLen,
LPWORD pApplID);

Parameter Comment
MessageBufferSize Size of message buffer
maxLogicalConnection Maximum number of logical connections

 Chapter 8.2: Windows 27

maxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where COMMON-ISDN-API is to place the as-

signed application identification number

Return Value

Return Value Comment
0x0000 Registration successful: application identification number has been as-

signed
All other values Coded as described in parameter Info, class 0x10xx

28 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.2.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from COMMON-ISDN-API. COM-
MON-ISDN-API releases all resources that have been allocated for the application.

The application is identified by the application identification number that was assigned
in the earlier CAPI_REGISTER operation.

Function call

CAPIENTRY CAPI_RELEASE (WORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.2: Windows 29

8.2.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by its application identification number.

Function call

CAPIENTRY CAPI_PUT_MESSAGE(WORD ApplID,
LPVOID pCAPIMessage);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
pCAPIMessage 16:16 (segmented) protected-mode pointer to the message to be passed to

COMMON-ISDN-API

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

When the function call returns control to the application, the message memory area
can be re-used.

30 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.2.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve messages intended for the specified application
identification number. If there is no message queued for retrieval, the function returns
immediately with an appropriate error code.

Function call

CAPIENTRY CAPI_GET_MESSAGE (WORD ApplID,
LPVOID *ppCAPIMessage);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
ppCAPIMessage 16:16 (segmented) protected-mode pointer to the memory location where

COMMON-ISDN-API should place the 16:16 (segmented) protected-
mode pointer to the message

Return Value

Return Value Comment
0x0000 Message was successfully retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The message received may be made invalid by the next CAPI_GET_MESSAGE call
for the same application identification number. This is especially important to note in
multi-threaded applications where more than one thread may execute
CAPI_GET_MESSAGE operations. Synchronization between threads must be done
by the application.

 Chapter 8.2: Windows 31

8.2.2 Other Functions

8.2.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application to install a mechanism by which
COMMON-ISDN-API signals the availability of a message or the clearing of an
internal busy or queue-full condition. All restrictions pertaining to an interrupt context
apply to the call-back function.

Function call

CAPIENTRY CAPI_SET_SIGNAL (WORD ApplID,
VOID (FAR PASCAL *CAPI_Callback) (WORD
ApplID, DWORD Param),
DWORD Param
);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
CAPI_Callback Address of the call-back function. The function is called in an interrupt

context (see note). The value 0x00000000 disables the call-back function.
Param Additional parameter of call-back function

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

Call-back notification takes place after:

• any message is queued in the application's message queue,
• an announced busy condition is cleared, or
• an announced queue-full condition is cleared.

32 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

In the case of local confirmations (such as LISTEN_CONF), the call-back notification
may occur before the operation CAPI_PUT_MESSAGE returns control to the
application.

The call-back function is called using the following conventions:

VOID FAR PASCAL CAPI_Callback (
 WORD ApplID,
 DWORD Param

);

The data segment register DS is undefined (MakeProcInstance() or _setds may be
used). A stack of at least 512 bytes is set up by COMMON-ISDN-API.

The call-back function may be called in an interrupt context (i.e., all data and code ac-
cessed by the call-back function must be kept from being paged out by Windows’
VMM, e.g. by using fixed segments in its own DLL and/or by applying Global-
PageLock() to selectors used).

PostMessage() and PostAppMessage() are the only Windows API functions which
may be called.

CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE and CAPI_SET_SIGNAL are the
only COMMON-ISDN-API functions which can be called.

The call-back function is not re-entered by COMMON-ISDN-API. Instead, it is
called again after returning if a new event has occurred during processing.

 Chapter 8.2: Windows 33

8.2.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API (DLL)
manufacturer identification. The application furnishes a 16:16 (segmented) protected-
mode pointer to a buffer of 64 bytes in szBuffer. COMMON-ISDN-API copies the
identification, coded as a zero-terminated ASCII string, to this buffer.

Function call

CAPIENTRY CAPI_GET_MANUFACTURER (LPBYTE szBuffer);

Parameter Comment
szBuffer 16:16 (segmented) protected-mode pointer to a buffer of 64 bytes

Return Value

Return Value Comment
0x0000 No error

34 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.2.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API as
well as an internal revision number.

Function call

CAPIENTRY CAPI_GET_VERSION (LPWORD pCAPIMajor,
LPWORD pCAPIMinor,
LPWORD pManufacturerMajor,
LPWORD pManufacturerMinor);

Parameter Comment
pCAPIMajor 16:16 (segmented) protected-mode pointer to a WORD which receives the

COMMON-ISDN-API major version number: 2
pCAPIMinor 16:16 (segmented) protected-mode pointer to a WORD which receives the

COMMON-ISDN-API minor version number: 0
pManufacturerMajor 16:16 (segmented) protected-mode pointer to a WORD which receives the

manufacturer-specific major number
pManufacturerMinor 16:16 (segmented) protected-mode pointer to a WORD which receives the

manufacturer-specific minor number

Return Value

Return Comment
0x0000 No error, version numbers have been copied

 Chapter 8.2: Windows 35

8.2.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a 16:16 (segmented) protected-mode
pointer to a string buffer of 8 bytes in szBuffer. COMMON-ISDN-API copies the
serial number string to this buffer. The serial number, a seven-digit number coded as a
zero-terminated ASCII string, is present in this buffer after the function has returned.

Function call

CAPIENTRY CAPI_GET_SERIAL_NUMBER (LPBYTE szBuffer);

Parameter Comment
szBuffer 16:16 (segmented) protected-mode pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

36 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.2.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a 16:16 (segmented) protected-mode pointer to a buffer
of 64 bytes in szBuffer. COMMON-ISDN-API copies information about
implemented features, the number of controllers and supported protocols to this buffer.
CtrlNr contains the number of the controller (bits 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

CAPIENTRY CAPI_GET_PROFILE (LPBYTE szBuffer,
WORD CtrlNr
);

Parameter Comment
szBuffer 16:16 (segmented) protected-mode pointer to a buffer of 64 bytes
CtrlNr Number of Controller. If 0, only the number of controllers installed is

provided to the application.

Return Value

Return Comment
0x0000
<> 0

No error
Coded as described in parameter Info, class 0x11xx

 Chapter 8.2: Windows 37

8.2.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine whether the ISDN hardware
and necessary drivers are installed.

Function call

CAPIENTRY CAPI_INSTALLED (void)

Return Value

Return Comment
0x0000 COMMON-ISDN-API is installed
any other value Coded as described in parameter Info, class 0x10xx

38 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.3: OS/2 (Application Level) 39

8.3 OS/2 (Application Level)

In a PC environment with the operating system OS/2 Version 2.x, application programs can access COMMON-
ISDN-API services via a DLL (Dynamic Link Library). The interface between applications and COMMON-
ISDN-API is realized as a function interface. Applications issue COMMON-ISDN-API function calls to
perform COMMON-ISDN-API operations.

The DLL providing the function interface must be named "CAPI20.DLL". It is a 32-bit DLL which exports 32-
bit functions in accordance with the System Call Convention. This means that all parameters are passed on the
stack, and the calling process must clear the stack after control returns from the function call.

The functions are exported under the following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI20.99
CAPI_REGISTER CAPI20.1
CAPI_RELEASE CAPI20.2
CAPI_PUT_MESSAGE CAPI20.3
CAPI_GET_MESSAGE CAPI20.4
CAPI_SET_SIGNAL CAPI20.5
CAPI_GET_MANUFACTURER CAPI20.6
CAPI_GET_VERSION CAPI20.7
CAPI_GET_SERIAL_NUMBER CAPI20.8
CAPI_GET_PROFILE CAPI20.9
CAPI_INSTALLED CAPI20.10

Applications may call these functions as imported functions in accordance with the DLL conventions. When an
application calls the DLL, it must ensure that there are at least 512 bytes available on the stack.

All pointers that are passed from the application program to COMMON-ISDN-API, or vice versa, in function
calls or in messages, are 0:32 flat pointers. This applies in particular to the data pointer in DATA_B3_REQ and
DATA_B3_IND messages. The referenced data shall not cross a 64 kbyte boundary in the flat address space,
because the DLL may convert the flat pointer it receives into a 16:16-bit segmented pointer.

In the OS/2 environment, the following data types are used in defining the functional interface:

word 16-bit unsigned integer
dword 32-bit unsigned integer
void* 0:32 flat pointer to any memory location
void** 0:32 flat pointer to a void *
char* 0:32 flat pointer to a character string
dword* 0:32 flat pointer to a 32-bit unsigned integer value

40 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.3.1 Message Operations

8.3.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

dword FAR PASCAL CAPI_REGISTER (dword MessageBufferSize,
dword maxLogicalConnection,
dword maxBDataBlocks,
dword maxBDataLen,
dword* pApplID);

Parameter Comment
MessageBufferSize Size of message buffer
maxLogicalConnection Maximum number of logical connections

 Chapter 8.3: OS/2 (Application Level) 41

maxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where COMMON-ISDN-API is to place the as-

signed application identification number

Return Value

Return Value Comment
0x0000 Registration successful: application identification number has been as-

signed
All other values Coded as described in parameter Info, class 0x10xx

42 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.3.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. COM-
MON-ISDN-API releases all resources that have been allocated for the application.

The application is identified by the application identification number that was assigned
in the earlier CAPI_REGISTER operation.

Function call

dword FAR PASCAL CAPI_RELEASE (dword ApplID);

Parameter Comment
ApplID Application identification assigned by the function CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Application successfully released
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.3: OS/2 (Application Level) 43

8.3.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by its application identification number. The message
memory area must not cross a 64 kbyte boundary in the flat address space (tiled
memory may be used, for example), because the DLL may convert the flat pointer it
receives from the application to a 16:16-bit segmented pointer. The same applies to the
B3 data blocks passed as pointers in DATA_B3_REQ messages.

Function call

dword FAR PASCAL CAPI_PUT_MESSAGE (dword ApplID,
void* pCAPIMessage);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
pCAPIMessage 0:32 (flat) pointer to the message being passed to COMMON-ISDN-API

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

When the function call returns control to the application, the message memory area
can be re-used.

44 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.3.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve those messages intended for the specified application
identification number. If there is no message queued for retrieval, the function returns
immediately with an error code.

Function call

dword FAR PASCAL CAPI_GET_MESSAGE (dword ApplID,
void** ppCAPIMessage);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
ppCAPIMessage 0:32 (flat) pointer to the memory location where COMMON-ISDN-API is

to place the 0:32 (flat) pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful: message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message may be made invalid by the next CAPI_GET_MESSAGE
operation for the same application identification number. This is particularly important
in multi-threaded applications where more than one thread may execute
CAPI_GET_MESSAGE operations. Synchronization between threads must be
performed by the application.

 Chapter 8.3: OS/2 (Application Level) 45

8.3.2 Other Functions

8.3.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application to install a mechanism by which
COMMON-ISDN-API signals the availability of a message to the application.

In OS/2 2.x this is best done using a fast 32-bit system event semaphore. The applica-
tion must create the semaphore to be used by calling the DosCreateEventSem()
function, which is part of the OS/2 system application program interface. This routine
provides a semaphore handle which is passed as a parameter in the
CAPI_SET_SIGNAL call.

When the signal is set, the specified semaphore is "posted" each time COMMON-
ISDN-API places a message in the application's message queue, thus incrementing a
post-count value associated with the semaphore. COMMON-ISDN-API posts the
semaphore by calling the DosPostEventSem() function of the OS/2 system API.

The application thread may wait until the semaphore’s post-count is greater than zero
using the OS/2 system call DosWaitEventSem(). It can also determine the current post
count and simultaneously reset the post counter by executing the OS/2 system API call
DosResetEventSem().

The signaling mechanism is deactivated by calling the CAPI_SET_SIGNAL function
with a semaphore handle of 0.

Function call

dword FAR PASCAL CAPI_SET_SIGNAL (dword ApplID,
dword hEventSem);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
hEventSem Event Semaphore handle allocated by operating system

46 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.3: OS/2 (Application Level) 47

8.3.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API (DLL)
manufacturer identification. The application provides a 0:32 (flat) pointer to a buffer
of 64 bytes in szBuffer. COMMON-ISDN-API copies the identification, coded as a
zero-terminated ASCII string, to this buffer.

Function call

void FAR PASCAL CAPI_GET_MANUFACTURER (char* szBuffer);

Parameter Comment
szBuffer 0:32 (flat) pointer to a buffer of 64 bytes

48 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.3.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

Function call

dword FAR PASCAL CAPI_GET_VERSION (dword* pCAPIMajor,
dword* pCAPIMinor,
dword* pManufacturerMajor,
dword* pManufacturerMinor);

Parameter Comment
pCAPIMajor 0:32 (flat) protected-mode pointer to a dword which receives the

COMMON-ISDN-API major version number: 2
pCAPIMinor 0:32 (flat) protected-mode pointer to a dword which receives the

COMMON-ISDN-API minor version number: 0
pManufacturerMajor 0:32 (flat) protected-mode pointer to a dword which receives the

manufacturer-specific major number
pManufacturerMinor 0:32 (flat) protected-mode pointer to a dword which receives the

manufacturer-specific minor number

Return Value

Return Comment
0x0000 No error, version numbers have been copied.

 Chapter 8.3: OS/2 (Application Level) 49

8.3.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a 0:32 (flat) protected-mode pointer to a
string buffer of 8 bytes in szBuffer. COMMON-ISDN-API copies the serial number
string to this buffer. The serial number, a seven-digit number coded as a zero-
terminated ASCII string, is present in this buffer after the function has returned.

Function call

dword FAR PASCAL CAPI_GET_SERIAL_NUMBER (char* szBuffer);

Parameter Comment
szBuffer 0:32 (flat) pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

50 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.3.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a 0:32 (flat) protected-mode pointer to a buffer of 64
bytes in szBuffer. COMMON-ISDN-API copies information about implemented
features, the number of controllers and supported protocols to this buffer. CtrlNr
contains the number of the controller (bits 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

dword FAR PASCAL CAPI_GET_PROFILE (LPBYTE szBuffer,
WORD CtrlNr
);

Parameter Comment
szBuffer 0:32 (flat) protected-mode pointer to a buffer of 64 bytes
CtrlNr Number of Controller. If 0, only number of controllers installed is provided

to the application.

Return Value

Return Comment
0x0000
<> 0

No error
Coded as described in parameter Info, class 0x11xx

 Chapter 8.3: OS/2 (Application Level) 51

8.3.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine whether the ISDN hardware
and necessary drivers are installed.

Function call

dword FAR PASCAL CAPI_INSTALLED (void)

Return Value

Return Comment
0x0000 COMMON-ISDN-API is installed
Any other value Coded as described in parameter Info, class 0x11xx

52 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.4: OS/2 (Device Driver Level) 53

8.4 OS/2 (Device Driver Level)

In a PC environment with the operating system OS/2 Version 2.x, COMMON-ISDN-API applications may
exist in the form of OS/2 physical device drivers (PDD). Such applications are referred to in the following
sections as "application PDDs". This specification describes the interface of an OS/2 2.x physical device driver
providing COMMON-ISDN-API services to other device drivers. This COMMON-ISDN-API PDD is called
"CAPI PDD" in the following sections.

Physical Device Drivers under OS/2 2.x are 16:16 segment modules. All functions in this specification are thus
16-bit functions, and all pointers are 16:16 segmented.

In this chapter, the following data types are used in defining the interface:

word 16-bit unsigned integer
dword 32-bit unsigned integer
void* 16:16 (segmented) pointer to any memory location
void** 16:16 (segmented) pointer to a void*
char* 16:16 (segmented) pointer to a character string
word* 16:16 (segmented) pointer to a word

The CAPI PDD offers its services to application PDDs via the Inter-Device Driver Interface. An application
PDD issues an inter-device driver call (IDC) to execute CAPI operations.

The CAPI PDD name which is contained in its device driver header must be "CAPI20 " (with trailing spaces to
extended the name to 8 characters). The CAPI PDD header must contain the offset to its inter-device driver call
entry point. The IDC bit of the Device Attribute Field in the device driver header must be set to 1.

Manufacturers who also wish to support COMMON-ISDN-API in OS/2’s DOS/Windows environment must
also provide the DOS/Windows 3.x interface of COMMON-ISDN-API in accordance with Subclauses 8.1/8.2.
In this case, the PDD’s name causes conflicts for Windows 3.x applications in accessing the COMMON-ISDN-
API DLL named CAPI20.DLL. To resolve this conflict, the following new mechanism was introduced in 1996
(with the Second Edition of COMMON-ISDN-API Version 2.0):

The CAPI PDD name which is contained in its device driver may be “CAPI20$ ” or “CAPI20 ” (both space-
extended to 8 characters). The preferred method is to use “CAPI20$ ”, but in order to achieve compatibility with
existing PDD-applications it shall be possible to install the COMMON-ISDN-API PDD with the device name
“CAPI20 ”. In this case, the DOS/Windows 3.x interface may be disabled. PDD applications should first try to
access the “CAPI20$ ” device.

An application PDD gains access to the CAPI PDD by issuing an AttachDD device help call. This call returns
the protected-mode IDC entry point, as a 16:16 segmented pointer, and the data segment of the CAPI PDD. Be-
fore calling the IDC entry point of the CAPI PDD, the application PDD must set the data segment register DS
appropriately.

This is the prototype of the CAPI PDD IDC function:

word CAPI20_IDC (word funcCode, void *funcPara);

The function is called with the C calling convention: thus the calling application PDD must clear the stack after
the function returns control. There must be at least 512 bytes available on the stack when the application PDD
calls the IDC function. The parameter funcCode selects the CAPI operation to be performed; the parameter
funcPara contains a 16:16 segmented pointer to the CAPI operation-specific parameters. The structure of these

54 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

parameters is defined in the following sections. The function returns an error code, which is 0 if no error
occurred.

 Chapter 8.4: OS/2 (Device Driver Level) 55

8.4.1 Message Operations

8.4.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. In doing so, the application provides COMMON-ISDN-API with a
memory area. A pointer to this memory area is transferred in parameter Buffer. The
application describes its needs by passing the four parameters MessageBufferSize,
maxLogicalConnection, maxBDataBlocks and maxBDataLen.

COMMON-ISDN-API uses the memory area referenced by parameter Buffer to store
messages and data blocks sent to the application PDD. The passed memory must be
either fixed or locked. COMMON-ISDN-API need not verify whether this storage
really exists. The size of the memory area is calculated by the following formula:

MessageBufferSize + (maxLogicalConnection * maxBDataBlocks * maxBDataLen)

For a typical application PDD, the amount of memory required should be calculated
by the following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

56 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

CAPI_REGISTER 0x01

Structure of command-specific parameters:

Parameter Type Comment
Buffer void* 16:16 (segmented) pointer to a memory region provided by

the application PDD. COMMON-ISDN-API uses this
memory area to store messages and data blocks sent for the
application PDD.

MessageBufferSize word Size of message buffer
maxLogicalConnection word Maximum number of logical connections
maxBDataBlocks word Number of data blocks available simultaneously
maxBDataLen word Maximum size of a data block
pApplID word* 16:16 (segmented) pointer to the location where COMMON-

ISDN-API is to place the assigned application identification
number

Return Value

Return Value Comment
0x0000 Registration successful: application identification number was assigned
All other values Coded as described in parameter Info, class 0x10xx

 Chapter 8.4: OS/2 (Device Driver Level) 57

8.4.1.2 CAPI_RELEASE

Description

The application PDD uses this operation to log out from COMMON-ISDN-API.
COMMON-ISDN-API releases all resources that have been allocated for the
application PDD.

The application PDD is identified by the application identification number that was as-
signed in the earlier CAPI_REGISTER operation.

CAPI_RELEASE 0x02

Structure of command-specific parameters:

Parameter Type Comment
ApplID word Application identification number assigned by the function

CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter 0x11xx

58 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.4.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application PDD transfers a message to COMMON-ISDN-
API. The application identifies itself by its application identification number. The
pointer passed to COMMON-ISDN-API is a 16:16 segmented pointer. The pointer in
a DATA_B3_REQ message is also 16:16 segmented. The memory area of the
message and the data block must be either fixed or locked.

CAPI_PUT_MESSAGE 0x03

Structure of command-specific parameters:

Parameter Type Comment
ApplID word Application identification number assigned by the function

CAPI_REGISTER
pCAPIMessage void* 16:16 segmented pointer to the message being passed to

COMMON-ISDN-API

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter 0x11xx

Note

When the function call returns control to the application PDD, the message memory
area can be re-used.

 Chapter 8.4: OS/2 (Device Driver Level) 59

8.4.1.4 CAPI_GET_MESSAGE

Description

With this operation the application PDD retrieves a message from COMMON-ISDN-
API. The application PDD can only retrieve those messages intended for the specified
application identification number. If there is no message queued for retrieval, the func-
tion returns immediately with an error.

CAPI_GET_MESSAGE 0x04

Structure of command-specific parameters:

Parameter Type Comment
ApplID word Application identification number assigned by the function

CAPI_REGISTER
ppCAPIMessage void** 16:16 segmented pointer to the memory location where

COMMON-ISDN-API is to place the 16:16 segmented
pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful: message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message may be made invalid by the next CAPI_GET_MESSAGE
operation for the same application identification number.

60 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.4.2 Other Functions

8.4.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application PDD to install a mechanism by which
COMMON-ISDN-API signals the availability of a message.

A call-back mechanism is used between COMMON-ISDN-API and the application
PDD. By calling the IDC function with the CAPI_SET_SIGNAL function code, the
application PDD passes to COMMON-ISDN-API a 16:16 (segmented) pointer to a
call-back function.

CAPI_SET_SIGNAL 0x05

Structure of command-specific parameters:

Parameter Type Comment
ApplID word Application identification number assigned by the function

CAPI_REGISTER
sigFunc void* 16:16 segmented pointer to the call-back function

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

The call-back function is called by COMMON-ISDN-API after:

• any message is queued in the application's message queue,
• an announced busy condition is cleared, or
• an announced queue-full condition is cleared.

 Chapter 8.4: OS/2 (Device Driver Level) 61

Interrupts are disabled. The call-back function must be terminated by RETF. All regis-
ters must be preserved. A stack of at least 32 bytes is provided by COMMON-ISDN-
API.

The call-back function is called with interrupts disabled. COMMON-ISDN-API shall
not call this function recursively, even if the call-back function enables interrupts. In-
stead, the call-back function shall be called again after returning control to
COMMON-ISDN-API.

The call-back function is allowed to use the COMMON-ISDN-API operations
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE, and CAPI_SET_SIGNAL. If it
does so, it must take into account the fact that interrupts may be enabled by COM-
MON-ISDN-API.

In case of local confirmations (such as LISTEN_CONF), the call-back function may
be called before the operation CAPI_PUT_MESSAGE returns control to the
application.

62 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.4.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API (DLL)
manufacturer identification. The application provides a 16:16 (segmented) protected-
mode pointer to a buffer of 64 bytes in szBuffer. COMMON-ISDN-API copies the
identification, coded as a zero-terminated ASCII string, to this buffer.

Function call

CAPI_GET_MANUFACTURER 0x06

Structure of command-specific parameters:

Parameter Type Comment
szBuffer char* 16:16 (segmented) pointer to a buffer of 64 bytes

Return Value

Return Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.4: OS/2 (Device Driver Level) 63

8.4.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API as
well as an internal revision number.

Function call

CAPI_GET_VERSION 0x07

Structure of command-specific parameters:

Parameter Type Comment
pCAPIMajor word* 16:16 (segmented) protected-mode pointer to a word which

receives the COMMON-ISDN-API major version number: 2
pCAPIMinor word* 16:16 (segmented) protected-mode pointer to a word which

receives the COMMON-ISDN-API minor version number:
0

pManufacturerMajor word* 16:16 (segmented) protected-mode pointer to a word which
receives the manufacturer-specific major number

pManufacturerMinor word* 16:16 (segmented) protected-mode pointer to a word which
receives the manufacturer-specific minor number

Return Value

Return Comment
0x0000 No error, version numbers have been copied
All other values Coded as described in parameter Info, class 0x11xx

64 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.4.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a 16:16 (segmented) protected-mode
pointer to a string buffer of 8 bytes in szBuffer. COMMON-ISDN-API copies the
serial number string to this buffer. The serial number, a seven-digit number coded as a
zero-terminated ASCII string, is present in this buffer after the function has returned.

Function call

CAPI_GET_SERIAL_NUMBER 0x08

Structure of command-specific parameters:

Parameter Type Comment
szBuffer char* 16:16 (segmented) pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.4: OS/2 (Device Driver Level) 65

8.4.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a 16:16 (segmented) protected-mode pointer to a buffer
of 64 bytes in szBuffer. COMMON-ISDN-API copies information about
implemented features, the number of controllers and supported protocols to this buffer.
CtrlNr contains the number of the controller (bits 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

CAPI_GET_PROFILE 0x09

Structure of command-specific parameters:

Parameter Type Comment
szBuffer void* 16:16 (segmented) protected-mode pointer to a buffer of 64

bytes
CtrlNr word Number of Controller. If 0, only number of controllers

installed is provided to the application.

Return Value

Return Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

66 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.5: UNIX 67

8.5 UNIX

COMMON-ISDN-API is incorporated in the UNIX environment as a kernel driver using streams facilities.
Communication between such kernel drivers and applications is typically based on the system calls open, ioctl,
putmsg, getmsg, and close. To register with a device driver, an application opens a stream (open()).
Applications log off from COMMON-ISDN-API using the system call close(). Data transfer to and from the
driver is accomplished by the calls putmsg() and getmsg(). Additional information is exchanged using the ioctl()
system call.

COMMON-ISDN-API uses this standardized driver access mechanism. For this reason, the following
specification does not define a complete functional interface (which would not be accepted by UNIX
applications, which always are—and must be—file-I/O oriented). Instead, the COMMON-ISDN-API system
call level interface is introduced, which any UNIX-like application can use to exchange COMMON-ISDN-API
messages and related data. Of course it is possible to provide a functional interface (as described in Chapter 8.2,
for example), but that would not be the appropriate application interface solution for communications
applications running on UNIX. The following specification nonetheless provides the complete capabilities of the
COMMON-ISDN-API access operations used in other operating systems.

COMMON-ISDN-API's device name is /dev/capi20. To allow multiple access by different UNIX processes,
the device is realized as a clone streams device.

An application (in COMMON-ISDN-API terms) can register with COMMON-ISDN-API (CAPI_REGISTER)
by opening the device /dev/capi20 and issuing the relevant parameters to the opened device by means of the
system call ioctl(). Note that the result of this operation is a file handle, not an application ID. Thus in the UNIX
environment, the application ID contained in COMMON-ISDN-API messages is not used to identify CAPI
applications. The only handle valid between the COMMON-ISDN-API kernel driver and the application, based
on a system call level interface, is a UNIX file handle. To release itself from COMMON-ISDN-API
(CAPI_RELEASE), an application must simply close the opened device. The COMMON-ISDN-API operations
CAPI_PUT_MESSAGE and CAPI_GET_MESSAGE are performed by means of the system calls putmsg() and
getmsg(). COMMON-ISDN-API need not provide a CAPI_SET_SIGNAL function: instead, applications may
use the UNIX signaling and/or waiting mechanism based on file descriptors. This includes waiting on multiple
file descriptors (poll()); a capability which is not offered by COMMON-ISDN-API in other operating systems.
All other COMMON-ISDN-API operations are realized by means of the system call ioctl() with appropriate
parameters.

All messages are passed transparently through the UNIX driver interface.

The following data types are used in defining the system call level interface in the UNIX environment:

ushort 16-bit unsigned integer
unsigned 32-bit unsigned integer

68 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.5.1 Message Operations

8.5.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the three parameters
maxLogicalConnection, maxBDataBlocks and maxBDataLen.

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

CAPI_REGISTER ioctl(): 0x01

Implementation

The following code fragment illustrates the UNIX implementation of the COMMON-
ISDN-API register function:

#include <sys/fcntl.h> /* open() parameters */
#include <sys/stropts.h> /* streams ioctl() constants */
#include <sys/socket.h> /* streams ioctl() macros */
...
struct capi_register_params {

 Chapter 8.5: UNIX 69

 unsigned maxLogicalConnection;
 unsigned maxBDataBlocks;
 unsigned maxBDataLen;
} rp;
int fd;
struct strioctl strioctl;

/* open device */
fd = open("/dev/capi20", O_RDWR, 0);

 /* set registration parameters */
rp.maxLogicalConnection = No. of simultaneous user data connections
rp.maxBDataBlocks = No. of buffered data messages
rp.maxBDataLen = Size of buffered data messages

 /* perform CAPI_REGISTER */
strioctl.ic_cmd = ('C' << 8) | 0x01; /* CAPI_REGISTER */
strioctl.ic_timout = 0;
strioctl.ic_dp = (void *)(&rp);
strioctl.ic_len = sizeof(struct capi_register_params);
ioctl(fd, I_STR, &strioctl);

For the sake of simplicity, no error checking is shown in the example.

70 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.5.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. This
signals to COMMON-ISDN-API that all resources allocated by COMMON-ISDN-
API for the application can be released.

CAPI_RELEASE close()

Implementation

To release a connection between an application and COMMON-ISDN-API driver,
the system call close() is used. All related resources are released.

 Chapter 8.5: UNIX 71

8.5.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by its application identification number.

CAPI_PUT_MESSAGE putmsg()

Implementation

The system call putmsg() is used to transfer a message from an application to the
COMMON-ISDN-API driver and the underlying controller.

The application places the COMMON-ISDN-API message in the ctl part of the
putmsg() call. The parameters data and data length of the DATA_B3_REQ message
must be stored in the data part of putmsg().

Note

The COMMON-ISDN-API message is stored in the ctl part of putmsg(). For the
message DATA_B3_REQ, the parameters data and data length in the ctl part of
putmsg() are not interpreted by COMMON-ISDN-API implementations.

72 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.5.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application retrieves each message associated with the specified file descriptor,
which is obtained through the operation CAPI_REGISTER.

CAPI_GET_MESSAGE getmsg()

Implementation

To receive a message from COMMON-ISDN-API, the application uses the system
call getmsg().

The application must supply sufficient buffers to receive the ctl and data parts of the
message. When receiving the COMMON-ISDN-API message DATA_B3_IND, the
message parameters data and data length are not supported. Instead, the data part of
getmsg() is used to pass the data.

 Chapter 8.5: UNIX 73

8.5.2 Other Functions

8.5.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API manufacturer
identification. The application provides a buffer which must have a size of at least 64
bytes. COMMON-ISDN-API copies the identification string, coded as a zero
terminated ASCII string, to this buffer.

CAPI_GET_MANUFACTURER ioctl(): 0x06

Implementation

This operation is realized using ioctl(0x06). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[64];

strioctl.ic_cmd = ('C' << 8) | 0x06; /* CAPI_GET_MANUFACTURER */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The manufacturer identification is transferred to the specified buffer. The string is
always zero-terminated.

74 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.5.2.2 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number. The application must provide a buffer with a size
of 4 * sizeof(unsigned).

CAPI_GET_VERSION ioctl(): 0x07

Implementation

This operation is realized using ioctl(0x07). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
unsigned buffer[4];

strioctl.ic_cmd = ('C' << 8) | 0x07; /* CAPI_GET_VERSION */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

On return, the buffer contains four elements:

first COMMON-ISDN-API major version: 0x02
second COMMON-ISDN-API minor version: 0x00
third Manufacturer-specific major number
fourth Manufacturer-specific minor number

 Chapter 8.5: UNIX 75

8.5.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a buffer which must have a size of 8
bytes. COMMON-ISDN-API copies the serial number string to this buffer. The serial
number, a seven-digit number coded as a zero-terminated ASCII string, is present in
this buffer after the function has returned.

CAPI_GET_SERIAL_NUMBER ioctl(): 0x08

Implementation

This operation is realized using ioctl(0x08). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[8];

strioctl.ic_cmd = ('C' << 8) | 0x08; /* CAPI_GET_SERIAL_NUMBER */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

The serial number consists of up to seven decimal digit ASCII characters. It is always
zero-terminated.

76 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.5.2.4 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a buffer of 64 bytes. COMMON-ISDN-API copies
information about implemented features, the number of controllers and supported
protocols to this buffer. CtrlNr, which is an input parameter for COMMON-ISDN-
API, is coded in the first byte of the buffer and contains the number of the controller
(bits 0..6) for which this information is requested. The profile structure retrieved is
described at the beginning of Chapter 8.

CAPI_GET_PROFILE 0x09

Implementation

This operation is realized using ioctl(0x09). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[64];

 /* Set Controller number */
((unsigned)(&buffer[0])) = CtrlNr;

strioctl.ic_cmd = ('C' << 8) | 0x09; /* CAPI_GET_PROFILE */
strioctl.ic_timout = 0;
strioctl.ic_dp = buffer;
strioctl.ic_len = sizeof(buffer);
ioctl(fd, I_STR, &strioctl);

Structure of command-specific parameters:

Parameter Comment
CtrlNr Number of Controller. If 0, only the number of controllers

installed is provided to the application.

 Chapter 8.6: NetWare 77

8.6 NetWare

The NetWare server operating system provides an open, non-preemptive multitasking platform including file,
print, communications and other services. A typical NetWare server can support tens to hundreds of
simultaneous users. Extensibility of communication services in particular is accommodated through open service
interfaces allowing integration of third party hardware and software. Scalability and flexibility are therefore
considered primary design goals when considering the addition of a new communications subsystem to the
NetWare operating system.

This implementation of COMMON-ISDN-API in the NetWare server operating system addresses both
scalability and flexibility by allowing concurrent operation of multiple CAPI-compliant applications and
multiple ISDN controllers supplied by different manufacturers. The COMMON-ISDN-API service provider in
the NetWare operating system environment is a subset of the overall NetWare CAPI Manager subsystem. The
NetWare CAPI Manager includes all standard functions defined by COMMON-ISDN-API v2.0 as well as
auxiliary functions providing enhanced ISDN resource management for NetWare systems running multiple
concurrent CAPI applications. The NetWare CAPI Manager subsystem also includes a secondary service
interface which integrates each manufacturer-specific ISDN controller driver below COMMON-ISDN-API.
Although the driver interface maintains the general structure and syntax of CAPI functions and messages, it is
not part of the COMMON-ISDN-API v2.0 definition, but unique to the NetWare CAPI Manager
implementation.

The following description of COMMON-ISDN-API within the NetWare server operating system provides a
detailed description of all the standard COMMON-ISDN-API functions which make up the application
programming interface, containing sufficient information to implement CAPI-compliant applications within the
NetWare environment. A general overview of the NetWare CAPI Manager is also provided to identify which
services are standard COMMON-ISDN-API and which are unique to the NetWare CAPI Manager subsystem.
Detailed description of the functions unique to the NetWare CAPI Manager for enhanced resource management
and ISDN controller software integration is beyond the scope of this document. The complete definition is
contained in the Novell specification NetWare CAPI Manager and CAPI Driver Specification (Version 2.0).

Architectural Overview
The NetWare CAPI Manager, which is implemented as a NetWare Loadable Module (NLM), acts as a service
multiplexer and common interface point between CAPI-compliant applications and each manufacturer-specific
ISDN controller driver situated below COMMON-ISDN-API. Each CAPI application and each controller driver
is implemented as a separate NLM which registers independently with the NetWare CAPI Manager at
initialization time. COMMON-ISDN-API exists between the CAPI applications and the NetWare CAPI
Manager. NetWare CAPI Manager auxiliary management functions also exist at this point. A Novell-defined
service interface exists between the NetWare CAPI Manager and the ISDN controller drivers; however,
applications have no knowledge of this lower-level interface. From the application perspective, the lower-level
driver interface is an internal detail of the NetWare CAPI Manager implementation of COMMON-ISDN-API.

Figure 1 illustrates the relationship between CAPI applications, the NetWare CAPI Manager, and manufacturer-
specific controller drivers and controller hardware.

78 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

‘

Controller Controller Controller

NetWare 3.x/4.x Server

CAPI-Application CAPI-Application CAPI-Application

NetWare CAPI-Manager

Controller Driver Controller Driver Controller Driver

Figure 1: Architectural Overview

Services provided by the CAPI Manager are presented as a set of exported public symbols. To avoid public
symbol conflicts within the server environment, the services provided by each controller driver are presented to
the NetWare CAPI Manager at driver registration time as a set of entry point addresses. CAPI Manager services
include the standard COMMON-ISDN-API function set, auxiliary functions supporting driver registration and
de-registration of controller services, and auxiliary management functions referenced by CAPI applications.

The additional management functions implement a powerful search mechanism for locating specific controller
resources and a locking mechanism to reserve controller resources for exclusive use by an application. The
CAPI_GetFirstCntlrInfo searches for the first occurrence of a controller whose capabilities match search criteria
specified by the application. The search criteria can include a symbolic controller name, specific protocols,
required bandwidth etc. The CAPI_GetNextCntlrInfo function searches for additional controllers which meet the
previously specified search criteria. The CAPI_LockResource function is provided for applications which must
have guaranteed access to a previously identified controller channel or protocol resources. The specified resource
remains reserved until the application calls the CAPI_FreeResource function. These additional management
functions are intended to provide enhanced management capabilities in server systems configured with a variety
of controllers or a large number of concurrently executing applications.

To insure efficient operation of multiple applications and drivers in the server environment, incoming message
signaling is required by the NetWare CAPI Manager. The CAPI_Register function defines additional signal
parameters, which must be provided by the application in order to register successfully. Applications are not
permitted to poll for incoming messages. Because signaling is required and signal parameters are specified at
registration time, the CAPI_SetSignal function is not included in this implementation of COMMON-ISDN-API.

For a complete definition of the auxiliary and driver functions, please refer to the NetWare CAPI Manager and
CAPI Driver Specification. The function descriptions provided in this section reflect only the standard
COMMON-ISDN-API function set provided by the NetWare CAPI Manager. Note that in some cases the
parameter lists required by the NetWare CAPI Manager version of COMMON-ISDN-API functions are different
from other operating system implementations.

 Chapter 8.6: NetWare 79

Function Call Conventions in the NetWare Environment:

• All interface functions conform to standard C language calling conventions.
• All functions can be called from either a process or an interrupt context.
• COMMON-ISDN-API defines a standard 16-bit error code format in which bits 8 to 15 identify the

error class and bits 0 to 7 identify the specific error. This approach is used throughout this section as
well, but with one difference: namely, that all functions return either a DWORD (unsigned long) or a
void type rather than a 16-bit WORD type. Bits 31 to 16 of the return value will always be zero.

Data Type Conventions in NetWare environment:

• Structures are used with byte alignment.
• The following additional simple data types are used:

BYTE unsigned 8 bit integer value
WORD unsigned 16-bit integer value
DWORD unsigned 32-bit integer value
BYTE * 32-bit pointer to an unsigned char
WORD * 32-bit pointer to an unsigned 16-bit integer
VOID * 32-bit pointer
VOID ** 32-bit pointer to a 32-bit pointer

80 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.6.1 Message Operations

8.6.1.1 CAPI_Register

Description

Applications use CAPI_Register to register their presence with COMMON-ISDN-
API. Registration parameters specify the maximum number of ISDN logical connec-
tions, the message buffer size, the number of data buffers and the data buffer size
required by the application. The message buffer size is normally calculated according
to following formula:

Message buffer size = 1024 + (1024 * number of ISDN logical connections)

Incoming message signaling parameters are also supplied. Successful registration
causes COMMON-ISDN-API to assign a system-unique application identifier to the
caller. This application identifier is presented in subsequent COMMON-ISDN-API
function calls as well as in COMMON-ISDN-API defined messages. Two options are
supported for signaling incoming message availability. The signalType and sig-
nalHandle parameters allow an application to select either CLIB Local Semaphore or
direct function call-back notification. Application polling of the incoming message
queue is not permitted. Successful application registration requires the selection of an
incoming message signaling mechanism.

Applications which maintain a CLIB process context should select Local Semaphore
signaling in the signalType parameter, and supply a previously allocated Local Sema-
phore handle as the signalHandle parameter. The application’s receiving process can
then wait on the local semaphore. When an incoming message is available, the CAPI
driver will signal the local semaphore, causing the application process to wake up and
retrieve a message by calling the CAPI_GetMessage function.

Applications which do not maintain a CLIB process context should select direct call-
back signaling in the signalType parameter, supply a pointer to an application-resident
notification function as the signalHandle parameter, and pass an application-defined
context value as the signalContext parameter. When an incoming message is available,
COMMON-ISDN-API will call the specified application notification function,
presenting the application context value. The application then calls the
CAPI_GetMessage function to retrieve any available messages.

 Chapter 8.6: NetWare 81

Function call

DWORD CAPI_Register(WORD messageBufSize,
WORD connectionCnt,
WORD dataBlockCnt,
WORD dataBlockLen,
WORD *applicationID
WORD signalType,
DWORD signalHandle,
DWORD signalContext,
);

Parameter Comment
messageBufSize Specifies the message buffer size.
connectionCnt Specifies the maximum number of logical connections this application can

maintain concurrently. Any attempt by the application to exceed the logical
connection count by accepting or initiating additional connections will
result in a connection establishment failure and an error indication from the
CAPI driver.

dataBlockCnt Specifies the maximum number of received data blocks that can be reported
to the application simultaneously for each B channel connection. The
number of B channel data blocks has a decisive effect on the throughput of
B channel data in the system and should be between 2 and 7. At least two B
channel data blocks must be specified.

dataBlockLen Specifies the maximum size of a B channel data unit which can be
transmitted and received. Selection of a protocol that requires larger data
units, or attempts to transmit or receive larger data units, will result in an
error from COMMON-ISDN-API.

applicationID This parameter specifies a pointer to a location where the CAPI Manager
will place the assigned application identifier during registration . This value
is valid only if the registration operation was successful, as indicated by a
return code of 0x0000.

signalType Specifies the incoming message signaling mechanism selected by the appli-
cation. The signaling mechanism is used by the driver to notify the appli-
cation when incoming control or data messages are available or when queue
full / busy conditions change. The signalType parameter also defines the
meaning of the signalHandle parameter. Two signalType constants are de-
fined as follows:
0x0001 SIGNAL_TYPE_LOCAL_SEMAPHORE
0x0002 SIGNAL_TYPE_CALLBACK

signalHandle Depending on the value of the signalType parameter, signalHandle speci-
fies either the local semaphore handle previously allocated to the applica-
tion, or the address of an application-resident receive notification function
with the following format:
void CAPI_ReceiveNotify(DWORD signalContext); (see below).

signalContext If the signalType parameter contains SIGNAL_TYPE_CALLBACK, the
signalContext specifies an application-defined context value. This value
will be passed to the application notification function. The signalContext
value has no meaning to CAPI. It may be used by an application to
reference internal data structures etc. during the receive notification
callback process. If the signalType parameter specifies
SIGNAL_TYPE_LOCAL_SEMAPHORE, this value is ignored.

82 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

Return Value

Return Value Comment
0x0000 Registration successful: application identification number has been as-

signed
All other values Coded as described in parameter Info, class 0x10xx

CAPI_ReceiveNotify

Description

This optional application-resident receive notification function is called by the
NetWare CAPI Manager implementation of the COMMON-ISDN-API whenever an
incoming message addressed to the application is available. This function is intended
for exclusive use by NetWare system applications which do not maintain a CLIB
context. Use of this function is enabled at application registration time by setting the
signalType parameter in CAPI_Register to SIGNAL_TYPE_CALLBACK. Note that
non-system-level applications should always use local semaphores for receive
message notification by setting the signalType parameter in CAPI_Register to
SIGNAL_TYPE_LOCAL_SEMAPHORE.

Each time the CAPI_ReceiveNotify function is called, it should in turn call
CAPI_GetMessage to retrieve the next available message addressed to the application.
The signalContext parameter passed to the CAPI_ReceiveNotify function contains an
application-defined context value previously supplied in the CAPI_Register function.
This value is meaningful only to the application, as an internal data structure pointer,
for example.

Note

The CAPI_ReceiveNotify function can be called from either the process or interrupt
context. To avoid adverse system impact, blocking operations such as disk input
output should not performed by the receive notify function. If blocking operations are
required they should be executed from a separate application supplied process.

 Chapter 8.6: NetWare 83

8.6.1.2 CAPI_Release

Description

Applications use CAPI_Release to log off from COMMON-ISDN-API. All memory
allocated on behalf of the application by COMMON-ISDN-API will be released.

Function call

DWORD CAPI_Release (WORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function CAPI_Register

Return Value

Return Value Comment
0x0000 Application successfully released
All other values Coded as described in parameter Info, class 0x11xx

84 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.6.1.3 CAPI_PutMessage

Description

Applications call CAPI_PutMessage to transfer a single message to COMMON-
ISDN-API.

Function call

DWORD CAPI_PutMessage(WORD ApplID,
VOID *pCAPIMessage
);

Parameter Comment
ApplID Application identification number assigned by the function CAPI_Register
pCAPIMessage Pointer to a memory block which contains a message for the CAPI Driver

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

When the process returns from the function call, the message memory area can be
reused by the application.

 Chapter 8.6: NetWare 85

8.6.1.4 CAPI_GetMessage

Description

Applications call CAPI_GetMessage to retrieve a single message from COMMON-
ISDN-API. If a message is available, it address is returned to the application in
location specified by the ppCAPIMessage parameter. If there are no messages
available from any of the registered drivers, CAPI_GetMessage returns with an error
indication.

The contents of the message block returned by this function are valid until the same
application calls CAPI_GetMessage again. Applications which process the message
asynchronously or need to maintain the message beyond the next call to
CAPI_GetMessage must make a local copy of the message.

Function call

DWORD CAPI_GetMessage(WORD ApplID,
VOID** ppCAPIMessage
);

Parameter Comment
ApplID Application identification number assigned by the function CAPI_Register
ppCAPIMessage Pointer to the memory location where the CAPI Manager should place the

retrieved message address. The contents of the output variable specified by
ppCAPIMessage is valid only if the return code indicates no error.

Return Value

Return Value Comment
0x0000 Successful: message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

86 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.6.2 Other Functions

8.6.2.1 CAPI_GetManufacturer

Description

Applications call CAPI_GetManufacturer to retrieve manufacturer-specific identifi-
cation information from the specified ISDN controller.

Function call

DWORD CAPI_GetManufacturer(DWORD Controller,
BYTE *szBuffer
);

Parameter Comment
Controller Specifies the system-unique controller number for which manufacturer

information is to be retrieved. Coding is described in Chapter 6.
szBuffer Specifies a pointer to an application data area 64 bytes long which will

contain the manufacturer identification information upon successful return.
The identification information is represented as a zero-terminated ASCII
text string.

Return Value

Return Value Comment
0x0000 Successful: information was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.6: NetWare 87

8.6.2.2 CAPI_GetVersion

Description

Applications call CAPI_GetVersion to retrieve version information from the specified
ISDN controller. Major and minor version numbers are returned for both COMMON-
ISDN-API and the manufacturer-specific implementation.

Function call

DWORD CAPI_GetVersion(DWORD Controller,
WORD *pCAPIMajor,
WORD *pCAPIMinor,
WORD *pManufacturerMajor,
WORD *pManufacturerMinor
WORD *pManagerMajor
WORD *pManagerMinor
);

Parameter Comment
Controller Specifies the system-unique controller number for which the manufacturer

information is to be retrieved. Coding is described in Chapter 6.
pCAPIMajor Pointer to a WORD which will receive the COMMON-ISDN-API major

version number: 0x0002
pCAPIMinor Pointer to a WORD which will receive the COMMON-ISDN-API minor

version number: 0x0000
pManufacturerMajor Pointer to a WORD which will receive the manufacturer-specific major

number
pManufacturerMinor Pointer to a WORD which will receive the manufacturer-specific minor

number
pManagerMajor Pointer to a WORD which will receive the CAPI Manager major version

number
pManagerMinor Pointer to a WORD which will receive the CAPI Manager minor version

number

Return Value

Return Comment
0x0000 No error, version numbers have been copied
All other values Coded as described in parameter Info, class 0x11xx

88 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.6.2.3 CAPI_GetSerialNumber

Description

Applications call CAPI_GetSerialNumber to retrieve the optional serial number of the
specified ISDN controller.

Function call

DWORD CAPI_GetSerialNumber(DWORD Controller,
BYTE *szBuffer
);

Parameter Comment
Controller Specifies the system-unique controller number for which the serial number

information is to be retrieved. Coding is described in Chapter 6.
szBuffer Pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.6: NetWare 89

8.6.2.4 CAPI_GetProfile

Description

The application uses this function to get information on the ISDN controller’s
capabilities from COMMON-ISDN-API. Buffer is a pointer to a buffer of 64 bytes.
COMMON-ISDN-API copies information to this buffer about implemented features,
the number of controllers and supported protocols. Controller contains the number of
the controller (bit 0..6) for which this information is requested. The profile structure
retrieved is described at the beginning of Chapter 8.

DWORD CAPI_GetProfile (VOID *Buffer,
DWORD Controller
);

Parameter Comment
Buffer Pointer to a buffer of 64 bytes
Controller Number of Controller. If 0, only number of installed controllers is returned

to the application.

Return Value

Return Comment
0x0000 No error

Buffer contains the requested information.
All other values Coded as described in parameter Info, class 0x11xx

90 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.7: Windows NT (Application Level) 91

8.7 Windows NT (Application Level)

In the operating system Windows NT 3.x / 4.x, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library).

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification.

92 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.8: Windows NT (Device Driver Level) 93

8.8 Windows NT (Device Driver Level)

For kernel-mode applications, COMMON-ISDN-API 2.0 must be implemented as kernel-mode device driver.
The interface to such a kernel-mode device driver in Windows NT is based on I/O request packets (IRPs), which
can be sent to the driver by either kernel-mode or user-mode applications.

COMMON-ISDN-API can be accessed as described in Chapter 8: Specifications for Commercial Operating
Systems, Subclause 8.20: Windows XP (Device Driver Level), without modification.

94 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8. 9: Windows 95 (Application Level) 95

8.9 Windows 95 (Application Level)

Under the operating system Windows 95, three types of user-mode applications can access COMMON-ISDN-
API:

• DOS-based applications
• Windows 3.x-based applications (16-bit)
• Windows 95-based applications (32-bit)

Each of these application types is able to use COMMON-ISDN-API.

8.9.1 DOS-based Applications

DOS-based applications continue to use the software interrupt mechanism of COMMON-ISDN-API as
described in Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.1: MS-DOS. The
implementation must also support a FAR CALL (after pushing flags) to the entry address of COMMON-ISDN-
API.

8.9.2 Windows 3.x-based Applications (16-bit)

Windows-based applications (16-bit) use the DLL mechanism of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.2: Windows (Application Level),
without modification. The CAPI20.DLL provided in Windows 95 has an identical interface to applications as
that in Windows 3.x.

8.9.3 Windows 95-based Applications (32-bit)

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification. The CAPI2032.DLL provided in Windows 95 has an identical interface to applications as that in
Windows NT.

96 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 97

8.10 Windows 95 (Device Driver Level)

COMMON-ISDN-API for Windows 95 must be implemented as a Virtual Device Driver (VxD). The interface
to such a kernel-mode driver consists of exported Virtual Device Services for other virtual devices and a
Virtual Device API for protected-mode applications (16 or 32-bit) which access the features of the virtual
device (i.e. CAPI20.DLL / CAPI2032.DLL). Both interfaces exchange information in CPU registers. The
exchange mechanism described in Chapter 8: Specifications for Commercial Operating Systems, Subclause
8.1: MS-DOS is used, and adapted to the 32-bit environment where necessary. The CAPI VxD shall also hook
the software interrupt F1 to offer COMMON-ISDN-API to DOS-based applications.

User-mode applications shall not use the device driver level interface directly. Instead, they must use the
specified access methods (i.e. software interrupt or DLL mechanism) to access COMMON-ISDN-API.

Architectural Overview:

Figure 2: Architectural Overview

DOS

Applications

16-bit Windows

Applications

32-bit Windows

Applications

Kernel Mode

Programs

(other VxDs)

CAPI20.DLL CAPI2032.DLL

CAPI VxD

Software Interrupt F1 VxD API VxD Services

98 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

Virtual Device Services can be used by other virtual devices by including an appropriate header file which
contains the service table declaration. A virtual device calls the CAPI VxD’s services using the VxDcall macro.
To verify the availability of CAPI VxD services, the calling virtual device must attempt to call the Get_Version
service of CAPI VxD. If the CAPI VxD has not been loaded, the VMM sets the carry flag and returns zero in the
AX register. The virtual device which provides COMMON-ISDN-API exports one CAPI-specific service,
namely an access to the message exchange functions described in this chapter. Information is exchanged directly
in CPU registers.

The Virtual Device API is used by CAPI20.DLL and CAPI2032.DLL. These DLLs retrieve an entry point
address for the Virtual Device API procedure for their virtual machine. The CAPI VxD can obtain the calling
application’s register values via the Client_Reg_Struc structure.

The CAPI VxD provides synchronous services. If any COMMON-ISDN-API service is entered while an
asynchronous interrupt is being processed, the value 0x1107 (internal busy condition) is returned in the AX
register.

Every VxD has a unique device ID. The CAPI VxD has the device ID 0x3215.

Service table declaration from CAPI VxD:

VCAPID_DEVICE_ID EQU 3215h
Begin_Service_Table VCAPID
 VCAPID_Service VCAPID_Get_Version, LOCAL
 VCAPID_Service VCAPID_MessageOperations, LOCAL
End_Service_Table VCAPID

In this section, the term pointer has two meanings: with reference to the 16-bit Virtual Device API, pointer refers
to a 16:16 (segmented) pointer to a memory location; where the 32-bit Virtual Device API is concerned, a
pointer is a 0:32 near flat pointer to a memory location.

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 99

8.10.1 Message Operations

8.10.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four registers ECX,
EDX, ESI and EDI.

For a typical application, the amount of memory required should be calculated by the
following formula:

ECX = 1024 + (1024 * EDX)

In the EDX register, the application specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

In the ESI register, the application specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

In the EDI register, the application specifies the maximum size of the application data
block to be transmitted and received. Selection of a protocol that requires larger data
units, or attempts to transmit or receive larger data units, will result in an error
indication from COMMON-ISDN-API. The default value for the protocol ISO 7776
(X.75) is 128 octets. COMMON-ISDN-API is able to support at least up to 2048
octets.

The application number is returned in AX. In the event of an error, the value 0 is
returned in AX, and the cause of the error is indicated in BX.

100 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

CAPI_REGISTER 0x01

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x01
ECX Size of message buffer
EDX Maximum number of Layer 3 connections
ESI Number of B3 data blocks available simultaneously
EDI Maximum size of a B3 data block

Return Value

Return Value Comment
AX <> 0 Application number (ApplID)
 0x0000 Registration error, cause of error in BX register
BX If AX == 0, coded as described in parameter Info, class

0x10xx

Note

If the application intends to open a maximum of one Layer 3 connection at a time and
use the standard protocols, the following register assignments are recommended:

ECX = 2048, EDX = 1, ESI = 7, EDI = 128

The resulting memory requirement is 2944 bytes.

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 101

8.10.1.2 CAPI_RELEASE

Description

The application uses this function to log out from COMMON-ISDN-API. The mem-
ory area indicated in the application’s CAPI_REGISTER call is released. The
application is identified by the application number in the EDX register. Any errors that
occur are returned in AX.

CAPI_RELEASE 0x02

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x02
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

102 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.10.1.3 CAPI_PUT_MESSAGE

Description

With this function the application transfers a message to COMMON-ISDN-API. A
pointer to the message is passed in the EBX register. The application is identified by
the application number in the EDX register. Any errors that occur are returned in AX.

CAPI_PUT_MESSAGE 0x03

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x03
EBX Pointer to message
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

Note

After returning from the CAPI_PUT_MESSAGE call, the application can re-use the
memory area of the message. The message is not modified by COMMON-ISDN-
API.

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 103

8.10.1.4 CAPI_GET_MESSAGE

Description

With this function the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve messages intended for the specified application
number. A pointer to the message is passed in the EBX register. If there is no message
queued for the application, the function returns immediately. Register AX contains the
corresponding error value. The application is identified by the application number in
the EDX register. Any errors that occur are returned in AX.

CAPI_GET_MESSAGE 0x04

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x04
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx
EBX Pointer to message, if available

Note

The message may be made invalid by the next CAPI_GET_MESSAGE call.

104 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.10.2 Other Functions

8.10.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate the use of the synchronous (non-
interrupt) call-back function. A pointer to a call-back function is specified in the EBX
register. The signaling function can be deactivated by a CAPI_SET_SIGNAL call
with the value 0 in the EBX register. The application is identified by the application
number in the EDX register. Any errors that occur are returned in the AX register.

CAPI_SET_SIGNAL 0x05

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x05
EDX Application number
EDI Parameter passed to call-back function
EBX Pointer to call-back function

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

Note

The call-back function is always called in a synchronous environment, i.e. outside any
hardware interrupt condition. It is called as a NEAR function in a 32-bit environment,
so it must return by a RET. If used via the Virtual Device API (i.e. not from another
Virtual Device Driver), the context of the calling VM is available.

The call-back function is called by COMMON-ISDN-API after

• any message is queued in the application's message queue,
• an announced busy condition is cleared, or
• an announced queue full-condition is cleared.

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 105

Interrupts are enabled. The call-back function must be terminated by RET. All regis-
ters must be preserved.

COMMON-ISDN-API does not call this function recursively. If necessary, the call-
back function is called again after it returns control to COMMON-ISDN-API.

The call-back function is allowed to use the COMMON-ISDN-API operations
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE, and CAPI_SET_SIGNAL.

In the case of local confirmations (such as LISTEN_CONF), the call-back function
may be called before the operation CAPI_PUT_MESSAGE returns control to the
application.

Registers EDX and EDI are passed to the call-back function with the same values as
the corresponding parameters of CAPI_SET_SIGNAL.

106 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.10.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API
manufacturer identification. The application provides a pointer to a data area of 64
bytes in the EBX register. The manufacturer identification, coded as a zero-terminated
ASCII string, is present in this data area after the function has been executed.

CAPI_GET_MANUFACTURER 0xF0

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF0
EBX Pointer to buffer
ECX Number of Controller. If 0, the manufacturer identification of

the software components is returned.

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx
EBX Buffer contains manufacturer identification as an ASCII

string, terminated by a 0 byte.

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 107

8.10.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

CAPI_GET_VERSION 0xF1

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF1
ECX Number of Controller. If 0, the version of the software

components is returned.

Return Value

Return Comment
AH COMMON-ISDN-API major version: 2
AL COMMON-ISDN-API minor version: 0
DH Manufacturer-specific major number
DL Manufacturer-specific minor number

108 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.10.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this function the application obtains the (optional) serial number of COMMON-
ISDN-API. The application provides a pointer to a data area of 8 bytes in register
EBX. The serial number, a seven-digit number coded as a zero-terminated ASCII
string, is present in this data area after the function has been executed. If no serial
number is supplied, the serial number is an empty string.

CAPI_GET_SERIAL_NUMBER 0xF2

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF2
EBX Pointer to buffer
ECX Number of Controller. If 0, the serial number of the software

components is returned.

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx
EBX Pointer to the (optional) serial number in plain text in the

form of a 7-digit number. If no serial number is used, a 0 byte
is written at the first position in the buffer. The end of the
serial number is indicated by a 0 byte.

 Chapter 8.10: Windows 95 (VxD Device Driver Level) 109

8.10.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. Register EBX must contain a pointer to a data area of 64 bytes. COMMON-
ISDN-API copies information about implemented features, the number of controllers
and supported protocols to this buffer. Register ECX contains the number of the
controller (bits 0..6) for which this information is requested. The profile structure
retrieved is described at the beginning of Chapter 8.

CAPI_GET_PROFILE 0xF3

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF3
ECX Controller number (if 0, only the number of controllers is re-

turned)
EBX Pointer to buffer

Return Value

Return Value Comment
AX 0x0000 No error
 <> 0 Coded as described in parameter Info, class 0x11xx

Note

Applications must ignore unknown bits in the profile structure since this function may
be extended. COMMON-ISDN-API sets every reserved field to 0.

110 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.10.2.6 CAPI_MANUFACTURER

Description

This function is manufacturer-specific.

CAPI_MANUFACTURER 0xFF

Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xFF
Manufacturer-specific

Return Value

Return Comment
Manufacturer-specific

 Chapter 8.11: Windows 95 (DeviceIoControl) 111

8.11 Windows 95 DeviceIoControl

COMMON-ISDN-API can also be accessed by using DeviceIoControl operations. The definition of this
interface is as close as possible to that of the Windows NT DeviceIoControl interface. Since not all Windows NT
device operations are available under Windows 95, however, this interface cannot be defined as completely
compatible with the Windows NT definition.

The following DEVICE_CONTROL codes are defined for COMMON-ISDN-API functions:

/*
* the common device type code for CAPI20 conforming drivers
*/
#define FILE_DEVICE_CAPI20 0x8001

/*
* DEVICE_CONTROL codes
*/
#define CAPI_CTL_BASE 0x800
#define CAPI_CTL_REGISTER (CAPI_CTL_BASE + 0x0001)
#define CAPI_CTL_RELEASE (CAPI_CTL_BASE + 0x0002)
#define CAPI_CTL_PUT_MESSAGE (CAPI_CTL_BASE + 0x0003)
#define CAPI_CTL_GET_MESSAGE (CAPI_CTL_BASE + 0x0004)
#define CAPI_CTL_GET_MANUFACTURER (CAPI_CTL_BASE + 0x0005)
#define CAPI_CTL_GET_VERSION (CAPI_CTL_BASE + 0x0006)
#define CAPI_CTL_GET_SERIAL (CAPI_CTL_BASE + 0x0007)
#define CAPI_CTL_GET_PROFILE (CAPI_CTL_BASE + 0x0008)
#define CAPI_CTL_WAIT_MESSAGE (CAPI_CTL_BASE + 0x0009)
#define CAPI_CTL_MANUFACTURER (CAPI_CTL_BASE + 0x00ff)

/*
* The wrapped control codes as required by the system.
* Note: while use of these macros is not required,
* no other control parameters are allowed for the
* DeviceIoControl control codes.
*/
#define CAPI_CTL_CODE(function,method) \
 CTL_CODE(FILE_DEVICE_CAPI20,function,method,FILE_ANY_ACCESS)

#define IOCTL_CAPI_REGISTER \
 CAPI_CTL_CODE(CAPI_CTL_REGISTER, METHOD_BUFFERED)

#define IOCTL_CAPI_RELEASE \
 CAPI_CTL_CODE(CAPI_CTL_RELEASE, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_MANUFACTURER\
 CAPI_CTL_CODE(CAPI_CTL_GET_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_VERSION \
 CAPI_CTL_CODE(CAPI_CTL_GET_VERSION, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_SERIAL \
 CAPI_CTL_CODE(CAPI_CTL_GET_SERIAL, METHOD_BUFFERED)

112 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

#define IOCTL_CAPI_GET_PROFILE \
 CAPI_CTL_CODE(CAPI_CTL_GET_PROFILE, METHOD_BUFFERED)

#define IOCTL_CAPI_MANUFACTURER \
 CAPI_CTL_CODE(CAPI_CTL_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_PUT_MESSAGE \
 CAPI_CTL_CODE(CAPI_CTL_PUT_MESSAGE, METHOD_IN_DIRECT)

#define IOCTL_CAPI_GET_MESSAGE \
 CAPI_CTL_CODE(CAPI_CTL_GET_MESSAGE, METHOD_OUT_DIRECT)

#define IOCTL_CAPI_WAIT_MESSAGE \
 CAPI_CTL_CODE(CAPI_CTL_WAIT_MESSAGE, METHOD_BUFFERED)

CAPI20-specific return values are mapped to Win32 error codes according to the following table. The error code
is returned by GetLastError() after a failure of DeviceIoControl().

Info Win32 Error Code
0x1001 ERROR_TOO_MANY_SESSIONS
0x1002 ERROR_INVALID_PARAMETER
0x1003
0x1004 ERROR_INSUFFICIENT_BUFFER
0x1005 ERROR_NOT_SUPPORTED
0x1006
0x1007 ERROR_NETWORK_BUSY
0x1008 ERROR_NOT_ENOUGH_MEMORY
0x1009
0x100a ERROR_SERVER_DISABLED
0x100b ERROR_SERVER_NOT_DISABLED
0x1101 ERROR_INVALID_HANDLE
0x1102 ERROR_INVALID_FUNCTION
0x1103 ERROR_TOO_MANY_CMDS
0x1104 ERROR_IO_PENDING
0x1105 ERROR_IO_DEVICE
0x1106 STATUS_INVALID_PARAMETER
0x1107 ERROR_BUSY
0x1108 ERROR_NOT_ENOUGH_MEMORY
0x1109
0x110a ERROR_SERVER_DISABLED
0x110b ERROR_SERVER_NOT_DISABLED

In Windows 95, all communications between a device and an application are associated with a file handle. For
this reason, a file handle is used instead of the application ID to link an application to the CAPI20 device. Any
application IDs contained in COMMON-ISDN-API messages are therefore ignored.

In the following, the interface between the application and the COMMON-ISDN-API device driver is described
by means of Win32 functions.

 Chapter 8.11: Windows 95 (DeviceIoControl) 113

8.11.1 Message Operations

8.11.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

CAPI_REGISTER CAPI_CTL_REGISTER

Implementation

For the CAPI_REGISTER operation, the application must first obtain a handle to the
COMMON-ISDN-API device using the Win32 CreateFile() function, then send a
CAPI_CTL_REGISTER to the COMMON-ISDN-API device. CAPI_REGISTER
passes the following data structure to the driver:

struct capi_register_params {

114 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 WORD MessageBufferSize,
 WORD maxLogicalConnection,
 WORD maxBDataBlocks,
 WORD maxBDataLen
};

Only one CAPI_CTL_REGISTER may be sent with a given handle before a
CAPI_CTL_RELEASE is sent. If an application program wants to register as more
than one COMMON-ISDN-API application, it must obtain several handles using
CreateFile() and send one CAPI_CTL_REGISTER with each handle. The
FILE_FLAG_OVERLAPPED option for fdwAttrsAndFlags must be set for proper
operation.

Example:

capi_handle = CreateFile("\\\\.\\CAPI20",
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);

r.MessageBufferSize = MessageBufferSize;
r.maxLogicalConnection = maxLogicalConnection;
r.maxBDataBlocks = maxBDataBlocks;
r.maxBDataLen = maxBDataLen;

ret = DeviceIoControl(capi_handle,

CAPI_CTL_REGISTER,
 (PVOID) &r,
sizeof(r),
NULL,
0,
&ret_bytes,
NULL);

 Chapter 8.11: Windows 95 (DeviceIoControl) 115

8.11.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. This
signals to COMMON-ISDN-API that all resources allocated by COMMON-ISDN-
API for the application can be released.

CAPI_RELEASE CAPI_CTL_RELEASE

Implementation

A CAPI_RELEASE can be performed in one of two ways. If the same handle is to be used
again, a CAPI_CTL_RELEASE must be sent. If the handle is no longer needed, the
COMMON-ISDN-API device may be simply closed using CloseHandle.

Example:

ret = DeviceIoControl(capi_handle,
CAPI_CTL_RELEASE,
NULL,
0,
NULL,
0,
&ret_bytes,
NULL);

CloseHandle(capi_handle);

116 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.11.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by a file handle.

CAPI_PUT_MESSAGE CAPI_CTL_PUT_MESSAGE

Implementation

The CAPI_PUT_MESSAGE function is performed using a
CAPI_CTL_PUT_MESSAGE DeviceIoControl.

With this DeviceIoControl operation, one data buffer is sent to the CAPI20 device
driver. This buffer must contain the message and, in the case of a DATA_B3_REQ
message, the associated data. The data (if applicable) must be placed in the buffer
immediately following the message.

ret = DeviceIoControl(capi_handle,
CAPI_CTL_PUT_MESSAGE,
(PVOID)msg, /* buffer for message + data */
msg_length, /* length of message + data */
NULL,
0,
&ret_bytes,
NULL);

This operation is completed immediately, without waiting for any network event (in
normal CAPI_PUT_MESSAGE operation).

The buffer can be re-used by the application as soon as the operation is completed.

 Chapter 8.11: Windows 95 (DeviceIoControl) 117

8.11.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application retrieves each message associated with the specified file handle
obtained in the CAPI_REGISTER operation.

CAPI_GET_MESSAGE CAPI_CTL_GET_MESSAGE

Implementation

The CAPI_GET_MESSAGE function is performed using the
CAPI_CTL_GET_MESSAGE DeviceIoControl operation.

With the CAPI_CTL_GET_MESSAGE DeviceIoControl operation, one data buffer is
received from the CAPI20 device driver. This buffer contains the message and, in the
case of a DATA_B3_IND message, the associated data. The data (if applicable) is
located in the buffer immediately following the message.

CAPI_CTL_GET_MESSAGE supports overlapped operation. If it returns TRUE, the
number of bytes in the message retrieved is available.

If the buffer provided by the application is to small to hold the message and the data,
an ERROR_INSUFFICIENT_BUFFER error is returned and no message is retrieved.

Example:

ret = DeviceIoControl(capi_handle,
CAPI_CTL_GET_MESSAGE,
NULL,
0,
(PVOID)buffer, /* buffer for message + data */
buffer_size, /* length of message + data */
&ret_bytes,
&0_read);

if (ret == TRUE) {
 /* operation succeeded immediately */
 /* ret_bytes contains the number of bytes accepted */
 ;
} else if (GetLastError() == ERROR_IO_PENDING) {
 /* operation pending, must wait for completion */
 WaitForSingleObject(result.hEvent, INFINITE);
 ret = GetOverlappedResult(capi_handle, &result, &ret_bytes, TRUE);
 if (ret == TRUE) {

118 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 /* operation successfully completed now */
 /* ret_bytes contains the number of bytes accepted */
 ;
 } else {
 /* sorry, failure */
 ...
 }
} else {
 /* operation failed immediately */
 ...
}

 Chapter 8.11: Windows 95 (DeviceIoControl) 119

8.11.1.5 CAPI_SET_SIGNAL

There is no CAPI_SET_SIGNAL function. Asynchronous signaling of a received
message is implicit in the completion of the CAPI_CTL_GET_MESSAGE operation.

120 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.11.2 Other Functions

8.11.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API manufacturer
identification. The application provides a buffer of at least 64 bytes. COMMON-
ISDN-API copies the identification, coded as a zero-terminated ASCII string, to this
buffer.

CAPI_GET_MANUFACTURER CAPI_CTL_GET_MANUFACTURER

Implementation

The manufacturer identification is read from the COMMON-ISDN-API driver using
CAPI_CTL_GET_MANUFACTURER. A buffer of 64 bytes must be provided by the
application. The manufacturer identification is returned as a zero-terminated ASCII
string. The controller number 0 returns the manufacturer name of the CAPI20 device
driver; other controller numbers return the manufacturer of the corresponding
controller.

DWORD controller; /* 32-bit */
char manufacturer[64];

controller = 0; /* to retrieve the manufacturer of the device driver */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_MANUFACTURER,
(PVOID) &controller,
sizeof (controller),
(PVOID) manufacturer,
sizeof (manufacturer),
&ret_bytes,
(POVERLAPPED) NULL);

 Chapter 8.11: Windows 95 (DeviceIoControl) 121

8.11.2.2 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

CAPI_GET_VERSION CAPI_CTL_GET_VERSION

Implementation

The version of COMMON-ISDN-API is read using CAPI_CTL_GET_VERSION. A
buffer with the following structure must be provided by the application:

struct capi_version_params {
WORD CAPIMajor; /* 16-bit */
WORD CAPIMinor;
WORD ManufacturerMajor;
WORD ManufacturerMinor;

} buf;

The controller number 0 returns the version info of the CAPI20 device driver; other
controller numbers return the version of the corresponding controller.

DWORD controller; /* 32-bit */

controller = 0; /* to retrieve the version of the device driver */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_VERSION,
(PVOID) &controller,
sizeof (controller),
(PVOID) &buf,
sizeof (buf),
&ret_bytes,
(POVERLAPPED) NULL);

122 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.11.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of
COMMON-ISDN-API. The application provides a buffer of 8 bytes. COMMON-
ISDN-API copies the serial number string to this buffer. The serial number, a seven-
digit number coded as a zero-terminated ASCII string, is present in this buffer after the
function has returned.

CAPI_GET_SERIAL_NUMBER CAPI_CTL_GET_SERIAL_NUMBER

Implementation

With CAPI_CTL_GET_SERIAL_NUMBER the COMMON-ISDN-API serial
number can be obtained from the driver. A buffer of 8 bytes must be provided by the
application. The serial number is returned in this buffer as a zero-terminated ASCII
string. The controller number 0 returns the serial number of the CAPI20 device driver;
other controller numbers return the serial number of the corresponding controller.

char serial[8];
DWORD controller; /* 32-bit */

controller = 0; /* to retrieve the serial number of the device driver */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_SERIAL_NUMBER,
(PVOID) &controller,
sizeof (controller),
(PVOID) serial,
sizeof (serial),
&ret_bytes,
(POVERLAPPED) NULL);

 Chapter 8.11: Windows 95 (DeviceIoControl) 123

8.11.2.4 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. COMMON-ISDN-API copies information about implemented features, the
number of controllers and supported protocols to the buffer profile. The double-word
controller contains the number of the controller (bit 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

CAPI_GET_PROFILE CAPI_CTL_GET_PROFILE

Implementation

The COMMON-ISDN-API capabilities can be obtained from the driver by this
DeviceIoControl. The application must provide a buffer formatted according to the
COMMON-ISDN-API profile structure in the profile parameter. This buffer is filled in
with the appropriate values by the DeviceIoControl call.

char profile[64];
DWORD controller; /* 32-bit */

controller = 1; /* to retrieve the profile of controller number one */
ret = DeviceIoControl(capi_handle,

CAPI_CTL_GET_PROFILE,
(PVOID) &controller,
sizeof (controller),
(PVOID)profile,
sizeof (profile),
&ret_bytes,
(POVERLAPPED) NULL);

124 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.12: Windows 98 (Device Driver Level) 125

8.12 Windows 98 (Application Level)

Under the operating system Windows 98, three types of user-mode applications can access COMMON-ISDN-
API:

• DOS-based applications,
• Windows 3.x-based applications (16-bit, Win3.x), and
• Win32-based applications (32-bit, Windows 95 / Windows NT).

Each of these application types is able to use COMMON-ISDN-API.

8.12.1 DOS-based Applications

DOS-based applications continue to use the software interrupt mechanism of COMMON-ISDN-API as
described in Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.1: MS-DOS. The
implementation must also support a FAR CALL (after pushing flags) to the entry address of COMMON-ISDN-
API.

8.12.2 Windows 3.x-based Applications (16-bit)

Windows-based applications (16-bit) use the DLL mechanism of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.2: Windows 3.x (Application
Level), without modification. The CAPI20.DLL provided in Windows 98 has the identical interface to
applications as that in Windows 3.x.

8.12.3 Win32-based Applications (32-bit)

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification.

126 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.13: Windows 98 (Device Driver Level) 127

8.13 Windows 98 (Device Driver Level)

8.13.1 Windows 95-based Virtual Device Driver (VxD)

Windows 95-based Virtual Device Drivers (VxD) use the interface of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.10: Windows 95 (Device Driver
Level), without modification.

8.13.2 Win32 Driver Model-based Device Driver (WDM)

Win32 Driver Model-based device drivers (WDM) use the interface of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.20: Windows XP (Device Driver
Level) without modification.

128 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.14: Windows 2000 (Application Level) 129

8.14 Windows 2000 (Application Level)

In the operating system Windows XP 32bit, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library).

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification

.

130 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.15: Windows 2000 (Device Driver Level) 131

8.15 Windows 2000 (Device Driver Level)

For kernel-mode applications, COMMON-ISDN-API 2.0 must be implemented as kernel-mode device driver.
The interface to such a kernel-mode device driver in Windows NT is based on I/O request packets (IRPs), which
can be sent to the driver by either kernel-mode or user-mode applications.

COMMON-ISDN-API can be accessed as described in Chapter 8: Specifications for Commercial Operating
Systems, Subclause 8.20: Windows XP (Device Driver Level), without modification.

132 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.16: Linux 133

8.16 Linux

Under the operating system Linux the COMMON-ISDN-API services are provided via a (shared) library. The
interface between applications and COMMON-ISDN-API is realized as a function interface. An application can
issue COMMON-ISDN-API function calls to perform COMMON-ISDN-API operations.

The functions are exported under following names:

 capi20_register
 capi20_release
 capi20_put_message
 capi20_get_message
 capi20_waitformessage
 capi20_get_manufacturer
 capi20_get_version
 capi20_get_serial_number
 capi20_get_profile
 capi20_isinstalled
 capi20_fileno

In the Linux environment all required types for the functional interface to the COMMON-ISDN-API services
can be included as follows:

 #include <sys/types.h>
 #include <linux/capi.h>
 #include <capi20.h>

134 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.16.1 Message Operations

8.16.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the three parameters
MaxLogicalConnection, MaxBDataBlocks and MaxBDataLen.

Parameter MaxLogicalConnection specifies the maximum number of logical
connections this application can concurrently maintain. Any application attempt to
exceed the logical connection count by accepting or initiating additional connections
will result in a connection set-up failure and an error indication from COMMON-
ISDN-API.

Parameter MaxBDataBlocks specifies the maximum number of received data blocks
that can be reported to the application simultaneously for each logical connection. The
number of simultaneously available data blocks has a decisive effect on the data
throughput in the system and should be between 2 and 7. At least two data blocks must
be specified.

Parameter MaxBDataLen specifies the maximum size of the application data block to
be transmitted and received. Selection of a protocol that requires larger data units, or
attempts to transmit or receive larger data units will result in an error indication from
COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is 128
octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

unsigned capi20_register (unsigned maxLogicalConnection,
unsigned maxBDataBlocks,
unsigned maxBDataLen,
unsigned *pApplID);

Parameter Comment
MaxLogicalConnection Maximum number of logical connections
MaxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where COMMON-ISDN-API is to place the

assigned application identification number

 Chapter 8.16: Linux 135

Return Value

Return Value Comment
0x0000 Registration successful: application identification number was assigned
All other values Coded as described in parameter Info, class 0x10xx.

136 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.16.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from COMMON-ISDN-API.
COMMON-ISDN-API will release all resources that have been allocated. The
application is identified by the application identification number that had been as-
signed in the previous CAPI_REGISTER operation.

Function call

unsigned capi20_release (unsigned ApplID);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Release of the application successful
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.16: Linux 137

8.16.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself with an application identification number.

Function call

unsigned capi20_put_message (unsigned ApplID,
unsigned char *Msg);

Parameter Comment
ApplID Application identification number (ApplID)
Msg Pointer to the message that is passed to COMMON-ISDN-API

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

When the process returns from the function call the message memory area can be
reused by the application.

138 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.16.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve those messages intended for the stipulated appli-
cation identification number. If there is no message waiting for retrieval, the function
returns immediately with an error code.

Function call

unsigned capi20_get_message (unsigned ApplID,
unsigned char **Buf);

Parameter Comment
ApplID Application identification number (ApplID)
Buf Pointer to the memory location where COMMON-ISDN-API should place

the pointer to the retrieved message

Return Value

Return Value Comment
0x0000 No error– message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message becomes invalid the next time the application issues a
CAPI_GET_MESSAGE operation for the same application identification number.
This especially matters in multi threaded applications where more than one thread may
execute CAPI_GET_MESSAGE operations. The synchronization between threads has
to be done by the application.

 Chapter 8.16: Linux 139

8.16.2 Other Functions

8.16.2.1 CAPI_WAIT_FOR_MESSAGE

Description

This operation is used by the application to wait for an asynchronous event from the
CAPI.

Function call

unsigned capi20_waitformessage (unsigned ApplID,
struct timeval *TimeOut);

Parameter Comment
ApplID Application identification number (ApplID)
TimeOut Pointer to a struct timeval value containing the maximum time to wait. If

NULL, the function waits until a message is available or a capi_release is
done.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

This function returns as soon as a message from CAPI is available or another
application’s thread issues a capi20_release() call.

140 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.16.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of
COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to a buffer of
64 bytes. COMMON-ISDN-API copies the identification string, coded as a zero ter-
minated ASCII string, to this buffer.

Function call

unsigned char *capi20_get_manufacturer (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment
Ctrl Number of the controller. If 0, the manufacturer identification of the kernel

driver is provided to the application.
Buf Pointer to a buffer of 64 bytes

Return Value

Return Value Comment
0x0000 Error: no information available
All other values Pointer to the buffer

 Chapter 8.16: Linux 141

8.16.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version (as well as an internal
revision number) of COMMON-ISDN-API or the controller(s).

Function call

unsigned char *capi20_get_version (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment
Ctrl Number of the controller. If 0, the version of the kernel driver is provided

to the application.
Buf Pointer to a buffer long enough for COMMON-ISDN-API to store four 32

bit values: the first pair of values is the version number of COMMON-
ISDN-API or the controller (first value: major version number (2), second
value: minor version number (0)), the second pair is a manufacturer-specifc
version (third value: major manufacturer version number, fourth value:
minor manufacturer version number)

Return Value

Return Value Comment
0x0000 Error: no information available
All other values Pointer to the buffer

142 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.16.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of
COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to a buffer of 8
bytes. COMMON-ISDN-API copies the serial number string to this buffer. The serial
number, coded as a zero terminated ASCII string, represents seven digit number after
the function has returned.

Function call

unsigned char *capi20_get_serial_number (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment
Ctrl Number of the controller. If 0, the serial number of the kernel driver is

provided to the application.
Buf Pointer to a buffer of 8 bytes.

Return Value

Return Value Comment
0x0000 Error: no information available
All other values Pointer to the buffer

 Chapter 8.16: Linux 143

8.16.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from COMMON-ISDN-API.
Buf contains a pointer to a data area of 64 bytes. In this buffer COMMON-ISDN-API
copies information about implemented features, number of controllers and supported
protocols. Ctrl contains the controller number (bit 0..6) for which this information is
requested. The retrieved structure format is described at the beginning of chapter 8.

Function call

unsigned capi20_get_profile (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment
Ctrl Number of the controller. If 0, only the number of controllers installed is

provided to the application.
Buf Pointer to a buffer of 64 bytes.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

This function can be extended, so an application has to ignore unknown bits.
COMMON-ISDN-API will set every reserved field to 0.

144 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.16.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine if the ISDN hardware and
necessary drivers are installed.

Function call

unsigned capi20_isinstalled (void);

Return Value

Return Value Comment
0x0000 COMMON-ISDN-API is installed.
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.16: Linux 145

8.16.2.7 CAPI_FILENO

Description

This function can be used for old-style applications which require poll() or select().
The recommended approach (especially with regards to future versions which may no
longer support this call) is to use capi_waitformessage and threads.

Function call

int capi20_fileno (unsigned ApplID);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI20_REGISTER

Return Value

Return Value Comment
-1 Application identification number is illegal.
All other values The file descriptor for the application identified by ApplID. This file

descriptor may be used only for poll() or select() system calls.

146 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Chapter 8.17: Linux (Kernel Level) 147

8.17 Linux (Kernel Level)

For kernel-mode applications, the COMMON-ISDN-API 2.0 is implemented as an interface structure
containing function pointers for the individual services. The structure has the following definition:

struct capi_interface {
 __u16 (*capi_isinstalled) (void);
 __u16 (*capi_register) (capi_register_params * rparam, __u16 * applidp);
 __u16 (*capi_release) (__u16 applid);
 __u16 (*capi_put_message) (__u16 applid, struct sk_buff * msg);
 __u16 (*capi_get_message) (__u16 applid, struct sk_buff ** msgp);
 __u16 (*capi_set_signal)

(
__u16 applid,
void (*signal)(__u16 applid, __u32 param),
__u32 param
);

 __u16 (*capi_get_version) (__u32 contr, struct capi_version * verp);
 __u16 (*capi_get_serial) (__u32 contr, __u8 serial[8]);
 __u16 (*capi_get_profile) (__u32 contr, struct capi_profile * profp);
 __u16 (*capi_get_manufacturer) (__u32 contr, __u8 buf[64]);
 int (*capi_manufacturer) (unsigned int cmd, void *data);
};

The data types used in this structure are:

 __u8, __u16, __u32 unsigned int types of indicated bit length
 struct capi_register_params defined in <linux/capi.h>
 struct capi_version defined in <linux/capi.h>
 struct capi_profile defined in <linux/capi.h>
 struct capi_interface defined in <linux/kernelcapi.h>
 struct capi_interface_user defined in <linux/kernelcapi.h>
 struct sk_buf defined in <linux/skbuff.h>

Two functions are provided to set up the kernel-mode COMMON-ISDN-API:

 struct capi_interface * attach_capi_interface(struct capi_interface_user *);
 int detach_capi_interface(struct capi_interface_user *);

Function attach_capi_interface() must be used to get access to the kernel-mode COMMON-ISDN-API by
means of a capi_interface structure. All further requests are performed with the function pointers of the structure.
The link between a client and kernel-mode COMMON-ISDN-API can be released by calling
detach_capi_interface(). A client of the kernel.mode COMMON-ISDN-API must provide an interface structure
containing the name of the client, a pointer to a callback function used to signal a controller’s up and down
status. If a client of kernel-mode COMMON-ISDN-API is not interested in this callback feature a NULL
pointer can be assigned to this structure field. The third field in the structure is used by kernel-mode
COMMON-ISDN-API internally:

struct capi_interface_user {
char name[20];
void (*callback)(unsigned cmd, __u32 ctrl, void *data);
struct capi_interface_user *next;

};

148 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.17.1 Message Operations

8.17.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing three parameters via a
pointer to a capi_register_params structure. Pointer applidp is used to store the
application identification number in case of a successful registration.

The data type capi_register_params is defined as follows:

 typedef struct capi_register_params {
 __u32 level3cnt;
 __u32 datablkcnt;
 __u32 datablklen;
 } capi_register_params;

Parameter field level3cnt specifies the maximum number of logical connections this
application can concurrently maintain. The special value –2 is used to assign as many
connections as supported by the controller. Any application attempt to exceed the
logical connection count by accepting or initiating additional connections will result in
a connection set-up failure and an error indication from kernel-mode COMMON-
ISDN-API.

Parameter field datablkcnt specifies the maximum number of received data blocks that
can be reported to the application simultaneously for each logical connection. The
number of simultaneously available data blocks has a decisive effect on the data
throughput in the system and should be between 2 and 7. At least two data blocks must
be specified.

Parameter datablklen specifies the maximum size of the application data block to be
transmitted and received. Selection of a protocol that requires larger data units, or at-
tempts to transmit or receive larger data units will result in an error indication from
kernel-mode COMMON-ISDN-API. The default value for the protocol ISO 7776
(X.75) is 128 octets. Kernel-mode COMMON-ISDN-API is able to support at least
up to 2048 octets.

 Chapter 8.17: Linux (Kernel Level) 149

Function call

__u16 (*capi_register) (capi_register_params * Rparam,
__u16 * Applidp);

Parameter Comment
Rparam Pointer to registration parameter structure.
Applidp Pointer to a 16 bit buffer for the application identification number. The

buffer will only be written as result of a successful registration.

Return Value

Return Value Comment
0x0000 No error, the application identification number has been stored.
All other values Coded as described in parameter Info, class 0x10xx.

150 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.17.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from kernel-mode COMMON-ISDN-
API. Kernel-mode COMMON-ISDN-API will release all resources that have been
allocated. The application is identified by the application identification number that
had been assigned in the previous CAPI_REGISTER operation.

Function call

__u16 (*capi_release) (__u16 Applid);

Parameter Comment
Applid Application identification number assigned by the CAPI_REGISTER

operation.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

 Chapter 8.17: Linux (Kernel Level) 151

8.17.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to kernel-mode COMMON-
ISDN-API. The application identifies itself with an application identification number.

Function call

__u16 (*capi_put_message) (__u16 Applid,
struct sk_buff * Msg);

Parameter Comment
Applid Application identification number assigned by the CAPI_REGISTER

operation.
Msg Pointer to the message that is passed to kernel-mode COMMON-ISDN-

API.

Return Value

Return Value Comment
0x0000 No error
0x1103 The send queue is full – the operation could not be performed.
All other values Coded as described in parameter Info, class 0x11xx.

Note

The message buffer Msg must have been allocated with alloc_skb() (see:
<linux/skbuff.h>). The low-level driver is responsible to release the buffer.

152 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.17.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from kernel-mode
COMMON-ISDN-API. The application can only retrieve those messages intended
for the stipulated application identification number. If there is no message waiting for
retrieval, the function returns immediately with an error code.

Function call

__u16 (*capi_get_message) (__u16 Applid,
struct sk_buff ** Msgp);

Parameter Comment
Applid Application identification number assigned by the CAPI_REGISTER

operation.
Msgp Pointer to the memory location where kernel-mode COMMON-ISDN-API

should place the pointer to the retrieved message.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

Note

The message buffer pointed to by Msgp must be released with kfree_skb() (see:
<linux/skbuff.h> after it has been processed by the client of kernel-mode COMMON-
ISDN-API.

 Chapter 8.17: Linux (Kernel Level) 153

8.17.2 Other Functions

8.17.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate the use of a call-back function. The
signaling function can be deactivated by a CAPI_SET_SIGNAL with parameter
signal = NULL. The application is identified by parameter Applid. An additional
parameter Param is passed to the call-back function.

Function call

__u16 (*capi_set_signal) (__u16 Applid,
void (*Signal)(__u16 applid, __u32 Param),
__u32 Param);

Parameter Comment
Applid Application identification number assigned by the CAPI_REGISTER

operation.
Signal Pointer to a signal handler function that kernel-mode COMMON-ISDN-

API will call when new messages have been received and can be fetched
with a CAPI_GET_MESSAGE operation. The two parameters of the signal
handler are equal to the 1st and 3rd parameter of this CAPI_SET_SIGNAL
operation.

Param This parameter will be transferred to the signal handler function without
changes.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

Note

The call-back function is called by COMMON-ISDN-API after

• any message is queued in the application's message queue,
• an announced busy condition is cleared, or
• an announced queue-full condition is cleared.

154 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.17.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application determines the manufacturer identification of
kernel-mode COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to
a buffer of 64 bytes. Kernel-mode COMMON-ISDN-API copies the identification
string, coded as a zero terminated ASCII string, to this buffer.

Function call

__u16 (*capi_get_manufacturer) (__u32 Contr,
__u8 Buf[64]);

Parameter Comment
Contr Number of the controller. If 0, the manufacturer identification of the kernel

driver is given to the application.
Buf Pointer to a buffer of 64 bytes

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

 Chapter 8.17: Linux (Kernel Level) 155

8.17.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version (as well as an internal
revision number) of COMMON-ISDN-API or the controller(s).

Function call

__u16 (*capi_get_version) (__u32 Contr,
struct capi_version * Verp);

Parameter Comment
Contr Number of the controller. If 0, the version of the kernel driver is given to

the application.
Verp Pointer to a buffer of data type capi_version. The buffer will not be written

in case of an error.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

156 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.17.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application determines the (optional) serial number of kernel-
mode COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to a
buffer of 8 bytes. Kernel-mode COMMON-ISDN-API copies the serial number
string to this buffer. The serial number, coded as a zero terminated ASCII string,
represents seven digit number after the function has returned.

Function call

__u16 (*capi_get_serial) (__u32 Contr,
__u8 Buf[8]);

Parameter Comment
Contr Number of the controller. If 0, the serial number of the kernel driver is

given to the application.
Buf Pointer to a buffer of 8 bytes. The buffer will not be written in case of an

error.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

 Chapter 8.17: Linux (Kernel Level) 157

8.17.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from COMMON-ISDN-API.
Buf contains a pointer to a data area of 64 bytes. In this buffer COMMON-ISDN-API
copies information about implemented features, number of controllers and supported
protocols. CtrlNr contains the controller number (bit 0..6) for which this information is
requested. The retrieved structure format is described at the beginning of chapter 8.

Function call

__u16 (*capi_get_profile) (__u32 Contr,
struct capi_profile * Profp);

Parameter Comment
Contr Number of the controller. If 0, only the number of installed controller is

given to the application.
ProfP Pointer to a buffer of type struct capi_profile. The buffer will not be written

in case of an error.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx.

Note

This function can be extended, so an application has to ignore unknown bits.
COMMON-ISDN-API will set every reserved field to 0. For a detailed description of
the capi_profile structure see section 4.2.2.7 of COMMON-ISDN-API Version 2.0
Part I.

158 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.17.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine if the ISDN hardware and
necessary drivers are installed.

Function call

__u16 (*capi_installed) (void);

Return Value

Return Value Comment
0x0000 COMMON-ISDN-API is installed.
All other values Coded as described in parameter Info, class 0x11xx

 Chapter 8.17: Linux (Kernel Level) 159

8.17.2.7 CAPI_MANUFACTURER

Description

This function can be used by an application to perform manufacturer-dependent
operations.

Function call

__u16 (*capi_manufacturer) (unsigned int Cmd,
void *Data);

Parameter Comment
Cmd Code of a manufacturer specific command.
Data Pointer to a buffer containing the parameters of the manufacturer specific

command. The buffer is located in user memory!

Return Value

Return Value Comment
All values Manufacturer-dependent.

160 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Windows XP 32bit (Application Level) 161

8.18 Windows XP 32bit (Application Level)

Under the operating system Windows 2000, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library). The interface between applications and COMMON-ISDN-API is realized as a
function interface. An application can issue COMMON-ISDN-API function calls to perform COMMON-
ISDN-API operations.

The DLL providing the function interface has to be named "CAPI2032.DLL". It is a 32-bit DLL exporting 32-bit
APIENTRY type functions.

The DLL functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI2032.99
CAPI_REGISTER CAPI2032.1
CAPI_RELEASE CAPI2032.2
CAPI_PUT_MESSAGE CAPI2032.3
CAPI_GET_MESSAGE CAPI2032.4
CAPI_WAIT_FOR_SIGNAL CAPI2032.5
CAPI_GET_MANUFACTURER CAPI2032.6
CAPI_GET_VERSION CAPI2032.7
CAPI_GET_SERIAL_NUMBER CAPI2032.8
CAPI_GET_PROFILE CAPI2032.9
CAPI_INSTALLED CAPI2032.10

These functions can be called by an application according to the DLL conventions as imported functions.

In the Windows 2000 environment, the following data types are used in defining the functional interface:

WORD 16-bit unsigned integer
DWORD 32-bit unsigned integer
PVOID Pointer to any memory location
PVOID * Pointer to a PVOID
char * Pointer to a character string
DWORD * Pointer to a 32-bit unsigned integer value

162 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.18.1 Message Operations

8.18.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

DWORD APIENTRY CAPI_REGISTER (DWORD MessageBufferSize,
DWORD maxLogicalConnection,
DWORD maxBDataBlocks,
DWORD maxBDataLen,
DWORD * pApplID);

 Windows XP 32bit (Application Level) 163

Parameter Comment
MessageBufferSize Size of Message Buffer
maxLogicalConnection Maximum number of logical connections
maxBDataBlocks Number of data blocks available simultaneously
maxBDataLen Maximum size of a data block
pApplID Pointer to the location where COMMON-ISDN-API should place the as-

signed application identification number

Return Value

Return Value Comment
0x0000 Registration successful: application identification number has been as-

signed
All other values Coded as described in parameter Info, class 0x10xx

164 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.18.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from COMMON-ISDN-API. COM-
MON-ISDN-API will release all resources that have been allocated.

The application is identified by the application identification number assigned in the
earlier CAPI_REGISTER operation.

Function call

DWORD APIENTRY CAPI_RELEASE (DWORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER

Return Value

Return Value Comment
0x0000 Application successfully released
All other values Coded as described in parameter Info, class 0x11xx

 Windows XP 32bit (Application Level) 165

8.18.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself with an application identification number.

Function call

DWORD APIENTRY CAPI_PUT_MESSAGE (DWORD ApplID,
PVOID pCAPIMessage);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
pCAPIMessage Pointer to the message being passed to COMMON-ISDN-API

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

When the process returns from the function call, the message memory area can be
reused by the application.

166 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.18.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve those messages intended for the stipulated appli-
cation identification number. If there is no message waiting for retrieval, the function
returns immediately with an error code.

Function call

DWORD APIENTRY CAPI_GET_MESSAGE (DWORD ApplID,
PVOID * ppCAPIMessage);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER
ppCAPIMessage Pointer to the memory location where COMMON-ISDN-API should place

the pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful: Message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message may become invalid the next time the application issues a
CAPI_GET_MESSAGE operation for the same application identification number.
This is especially important in multi-threaded applications where more than one thread
may execute CAPI_GET_MESSAGE operations. The synchronization between
threads has to be done by the application.

 Windows XP 32bit (Application Level) 167

8.18.2 Other Functions

8.18.2.1 CAPI_WAIT_FOR_SIGNAL

Description

This operation is used by the application to wait for an asynchronous event from
COMMON-ISDN-API.

Function call

This function returns as soon as a message from COMMON-ISDN-API is available.

DWORD APIENTRY CAPI_WAIT_FOR_SIGNAL (DWORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function

CAPI_REGISTER

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Note

This function also returns as soon as the application calls CAPI_RELEASE, even if
no pending COMMON-ISDN-API message is available in the COMMON-ISDN-
API message queue. The COMMON-ISDN-API application shall not destroy the
thread while CAPI_WAIT_FOR_SIGNAL is in the blocking state.

168 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.18.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the manufacturer identification of
COMMON-ISDN-API (DLL). SzBuffer is a pointer to a buffer of 64 bytes.
COMMON-ISDN-API copies the identification string, coded as a zero-terminated
ASCII string, to this buffer.

Function call

VOID APIENTRY CAPI_GET_MANUFACTURER (char * SzBuffer);

Parameter Comment
SzBuffer Pointer to a buffer of 64 bytes

 Windows XP 32bit (Application Level) 169

8.18.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API as
well as an internal revision number.

Function call

DWORD APIENTRY CAPI_GET_VERSION (DWORD * pCAPIMajor,
DWORD * pCAPIMinor,
DWORD * pManufacturerMajor,
DWORD * pManufacturerMinor);

Parameter Comment
pCAPIMajor Pointer to a DWORD which will receive the COMMON-ISDN-API major

version number: 2
pCAPIMinor Pointer to a DWORD which will receive the COMMON-ISDN-API

minor version number: 0
pManufacturerMajor Pointer to a DWORD which will receive the manufacturer-specific major

number
pManufacturerMinor Pointer to a DWORD which will receive the manufacturer-specific minor

number

Return Value

Return Comment
0x0000 No error, version numbers have been copied.

170 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.18.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. SzBuffer on call is a pointer to a buffer of 8 bytes. COMMON-
ISDN-API copies the serial number string to this buffer. The serial number, coded as a
zero-terminated ASCII string of up to seven digits, can be read from the buffer after
the function has returned.

Function call

DWORD APIENTRY CAPI_GET_SERIAL_NUMBER (char * SzBuffer);

Parameter Comment
SzBuffer Pointer to a buffer of 8 bytes

Return Value

Return Comment
0x0000 No error

SzBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

 Windows XP 32bit (Application Level) 171

8.18.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from COMMON-ISDN-API.
SzBuffer contains a pointer to a data area of 64 bytes. In this buffer COMMON-
ISDN-API copies information about implemented features, the number of controllers
and supported protocols. CtrlNr contains the number of the controller (bit 0..6) for
which this information is requested. The profile structure retrieved is described at the
beginning of Chapter 8.

DWORD APIENTRY CAPI_GET_PROFILE (PVOID SzBuffer,
DWORD CtrlNr);

Parameter Comment
SzBuffer Pointer to a buffer of 64 bytes
CtrlNr Number of Controller. If 0, only the number of installed controllers is

returned to the application.

Return Value

Return Comment
0x0000 No error
<> 0 Coded as described in parameter Info, class 0x11xx

Note

This function may be extended, so the application must ignore unknown bits in the
profile structure. COMMON-ISDN-API will set every reserved field to 0.

172 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.18.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine whether the ISDN hardware
and necessary drivers are installed.

Function call

DWORD APIENTRY CAPI_INSTALLED (VOID)

Return Value

Return Comment
0x0000 COMMON-ISDN-API is installed
Any other value Coded as described in parameter Info, class 0x11xx

 Windows XP 64bit (Application Level) 173

8.19 Windows XP 64bit (Application Level)

In the operating system Windows XP 64bit, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library) named “CAPI2064.DLL”. It is a 64-bit DLL exporting 64-bit APIENTRY type
functions. Windows-based applications (64-bit) can use the DLL mechanism as described in Chapter 8:
Specifications for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level),
without modification.

Note: An application shall send and receive data through the 64bit DLL by using the 64bit pointer in the CAPI
messages DATA_B3_REQ/DATA_B3_IND.

174 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 Windows XP (Device Driver Level) 175

8.20 Windows XP (Device Driver Level)

For kernel-mode applications, the COMMON-ISDN-API 2.0 must be implemented as kernel-mode device
driver. The interface to such a kernel-mode device driver in Windows 2000 is based on I/O request packets
(IRPs), which can be sent to the driver by either kernel-mode or user-mode applications.

A CAPI20 device driver creates at least one CAPI20 device object which can be addressed by an application.
The Flags field of each device object must be ORed with DO_DIRECT_IO after creation. Each device object is
given a name for identification. The name of a CAPI20 device object is \Device\CAPI20x, where x is a
configured decimal ordinal number. The CAPI20 device object name can be used by kernel-mode applications to
send IRPs to the corresponding CAPI20 device driver.

A CAPI20 device driver may support multiple controllers. The implementation is free to create a single device
object for all supported controllers or a separate device object for each supported controller. Controller numbers
are assigned for each CAPI20 device object starting with 1.

In order to be accessible to user-mode applications, a CAPI20 device driver creates a symbolic link object for
each CAPI20 device object. The name of the symbolic link object is \DosDevices\CAPI20x, where x is the same
ordinal number used in the device object name. This allows user-mode applications to access the driver’s
COMMON-ISDN-API services by using the name \\.\CAPI20x in a Win32 CreateFile() operation.

To ensure the correct loading order of a CAPI20 driver, the driver must be assigned to the group “CAPI20”. This
is achieved by adding the REG_SZ value entry “Group” to the driver’s service subkey in the registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\<CAPI-Driver-Service>\

DisplayName: REG_SZ: CAPI20 Driver ...
ErrorControl: REG_DWORD: ...
Group: REG_SZ: CAPI20
ImagePath: REG_SZ: ...
Start: REG_DWORD: ...
Type: REG_DWORD: ...

The driver installation must ensure that the group CAPI20 is listed in ServiceGroupOrder immediately before the
group NDIS.

To permit unambiguous configuration of all CAPI20 device drivers, a new common subkey is created in the
Windows 2000 registry. This subkey is named CAPI20 and contains a subkey x for each CAPI20x device object
created by CAPI20 device drivers. The CAPI20 subkey must be queried during the installation of a new CAPI20
device driver. If the CAPI20 subkey does not yet exist, the installation procedure must create it. For each device
object created by the new driver, a new subkey x is created with the lowest possible ordinal number: The ordinal
number for the first CAPI20 device object is 1. Thus the first CAPI20 device driver installed uses the name
\Device\CAPI201 for its first device object and the name\Device\CAPI202 for its second device object (if any),
etc. The ordinal numbers claimed by the new driver must be noted in the driver’s private configuration data.
When the driver is removed from the system, the de-installation procedure must also remove the corresponding
subkeys under the CAPI20 subkey.

HKEY_LOCAL_MACHINE\SOFTWARE\CAPI20\
Contents:
1\
 NumberOfControllers: REG_DWORD: <Number of Controllers supported >
 Manufacturer: REG_SZ: <Manufacturer Name>
 DeviceName: REG_SZ: CAPI201

176 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

 /* For each supported controller a controller subkey is created: */
 1\
 Channels: REG_DWORD: <Number of B-channels supported by this controller>
 2\
 etc.
2\ ...

Every driver that conforms to CAPI20 must be designed to work in a chain of layered drivers. Thus the driver
must not use any operation which is only legal for a highest-level driver.

Every driver that conforms to CAPI20 must be designed to be unloadable, i.e. the driver must set the entry point
of its Unload routine in the DriverObject passed to its DriverEntry routine. The Unload routine must release all
previously allocated kernel and hardware resources in order to permit an new initialization of the driver at a later
time.

Every driver that conforms to CAPI20 must handle the cancellation of IRPs.

Every driver that conforms to CAPI20 must handle the following major function codes:

IRP_MJ_CREATE
IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_READ
IRP_MJ_WRITE
IRP_MJ_SHUTDOWN
IRP_MJ_DEVICE_CONTROL
IRP_MJ_INTERNAL_DEVICE_CONTROL

To receive shutdown notification from the system shutdown process in a highest-level driver, the driver must call
IoShutdownNotification() in its DriverEntry routine, but must ignore any error returned by this call.

Three types of IRP_MJ_xxx functions are used by a user-mode application to communicate with the
COMMON-ISDN-API device: IRP_MJ_DEVICE_CONTROL, IRP_MJ_READ and IRP_MJ_WRITE.

The IRP_MJ_INTERNAL_DEVICE_CONTROL function is reserved exclusively for use by kernel-mode
applications, i.e. for inter-device driver communication.

IRP_MJ_DEVICE_CONTROL is used for all CAPI20 functions except CAPI_GET_MESSAGE and
CAPI_PUT_MESSAGE.

The CAPI_GET_MESSAGE and CAPI_PUT_MESSAGE functions use IRP_MJ_READ/WRITE (user-mode
and kernel-mode applications) or IRP_MJ_INTERNAL_DEVICE_CONTROL (kernel-mode applications only).

The following DEVICE_CONTROL and INTERNAL_DEVICE_CONTROL codes are defined for the
COMMON-ISDN-API functions:

/*
* the common device type code for driver conforming to CAPI20
*/
#define FILE_DEVICE_CAPI20 0x8001

/*
* DEVICE_CONTROL codes for user AND kernel-mode applications

 Windows XP (Device Driver Level) 177

*/
#define CAPI20_CTL_BASE 0x800
#define CAPI20_CTL_REGISTER (CAPI20_CTL_BASE+0x0001)
#define CAPI20_CTL_RELEASE (CAPI20_CTL_BASE+0x0002)
#define CAPI20_CTL_GET_MANUFACTURER (CAPI20_CTL_BASE+0x0005)
#define CAPI20_CTL_GET_VERSION (CAPI20_CTL_BASE+0x0006)
#define CAPI20_CTL_GET_SERIAL (CAPI20_CTL_BASE+0x0007)
#define CAPI20_CTL_GET_PROFILE (CAPI20_CTL_BASE+0x0008)

/*
* INTERNAL_DEVICE_CONTROL codes for kernel-mode applications only
*/
#define CAPI20_CTL_PUT_MESSAGE (CAPI20_CTL_BASE+0x0003)
#define CAPI20_CTL_GET_MESSAGE (CAPI20_CTL_BASE+0x0004)

/*
* The wrapped control codes as required by the system
*/
#define CAPI20_CTL_CODE(function,method) \
 CTL_CODE(FILE_DEVICE_CAPI20,function,method,FILE_ANY_ACCESS)

#define IOCTL_CAPI_REGISTER \
 CAPI20_CTL_CODE(CAPI20_CTL_REGISTER, METHOD_BUFFERED)

#define IOCTL_CAPI_RELEASE \
 CAPI20_CTL_CODE(CAPI20_CTL_RELEASE, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_MANUFACTURER\
 CAPI20_CTL_CODE(CAPI20_CTL_GET_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_VERSION \
 CAPI20_CTL_CODE(CAPI20_CTL_GET_VERSION, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_SERIAL \
 CAPI20_CTL_CODE(CAPI20_CTL_GET_SERIAL, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_PROFILE \
 CAPI20_CTL_CODE(CAPI20_CTL_GET_PROFILE, METHOD_BUFFERED)

#define IOCTL_CAPI_MANUFACTURER \
 CAPI20_CTL_CODE(CAPI20_CTL_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_PUT_MESSAGE \
 CAPI20_CTL_CODE(CAPI20_CTL_PUT_MESSAGE, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_MESSAGE \
 CAPI20_CTL_CODE(CAPI20_CTL_GET_MESSAGE, METHOD_BUFFERED)

To transfer CAPI20-specific return values from the driver to kernel or user-mode applications, the status code of
the IRP is set accordingly. Because only some IRP status codes are mapped directly to Win32 error codes (the
return codes of DeviceIoControl(), ReadFile(), WriteFile()), the following status code representation for
CAPI20 errors (Info values) must be used:

Info Windows 2000 Status code Win32 Error Code
0x1001 STATUS_TOO_MANY_SESSIONS ERROR_TOO_MANY_SESSIONS
0x1002 STATUS_INVALID_PARAMETER ERROR_INVALID_PARAMETER
0x1003 N.A.
0x1004 STATUS_BUFFER_TOO_SMALL ERROR_INSUFFICIENT_BUFFER
0x1005 STATUS_NOT_SUPPORTED ERROR_NOT_SUPPORTED
0x1006 N.A.

178 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

0x1007 STATUS_NETWORK_BUSY ERROR_NETWORK_BUSY
0x1008 STATUS_INSUFFICIENT_RESOURCES ERROR_NOT_ENOUGH_MEMORY
0x1009 N.A.
0x100A STATUS_SERVER_DISABLED ERROR_SERVER_DISABLED
0x100B STATUS_SERVER_NOT_DISABLED ERROR_SERVER_NOT_DISABLED
0x1101 STATUS_INVALID_HANDLE ERROR_INVALID_HANDLE
0x1102 STAUS_ILLEGAL_FUNCTION ERROR_INVALID_FUNCTION
0x1103 STATUS_TOO_MANY_COMMANDS ERROR_TOO_MANY_CMDS
0x1104 N.A.
0x1105 STATUS_DATA_OVERRUN ERROR_IO_DEVICE
0x1106 STATUS_INVALID_PARAMETER STATUS_INVALID_PARAMETER
0x1107 STATUS_DEVICE_BUSY ERROR_BUSY
0x1108 STATUS_INSUFFICIENT_RESOURCES ERROR_NOT_ENOUGH_MEMORY
0x1109 N.A
0x110A STATUS_SERVER_DISABLED ERROR_SERVER_DISABLED
0x110B STATUS_SERVER_NOT_DISABLED ERROR_SERVER_NOT_DISABLED

In Windows 2000, all communication between a device object and an application is associated with a file object.
For this reason, a file object pointer (or “file handle”) is used instead of the application ID to link a CAPI20
device object with a user-mode or kernel-mode application. Any application IDs contained in COMMON-
ISDN-API messages are therefore ignored.

In the following, the interface between the application and the COMMON-ISDN-API device driver is described
by means of Win32 functions. These functions are available for user-mode applications only. The equivalent
kernel-mode functions can be found in the Windows 2000 documentation.

 Windows XP (Device Driver Level) 179

8.20.1 Message Operations

8.20.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDataLen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

CAPI_REGISTER CAPI_CTL_REGISTER

Implementation

To perform the CAPI_REGISTER operation, the application must first obtain a handle
to the COMMON-ISDN-API device using the Win32 CreateFile function, then send
a CAPI_CTL_REGISTER to the COMMON-ISDN-API device. CAPI_REGISTER
passes the following data structure to the driver:

180 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

struct capi_register_params {
 WORD MessageBufferSize,
 WORD maxLogicalConnection,
 WORD maxBDataBlocks,
 WORD maxBDataLen
};

Only one CAPI_CTL_REGISTER may be sent with a given handle before a
CAPI_CTL_RELEASE is sent. If an application program wants to register as more
than one COMMON-ISDN-API application, it must obtain several handles using
CreateFile and send one CAPI_CTL_REGISTER with each handle.

Example:

capi_handle = CreateFile("\\\\.\\CAPI201",
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);

r.MessageBufferSize = MessageBufferSize;
r.maxLogicalConnection = maxLogicalConnection;
r.maxBDataBlocks = maxBDataBlocks;
r.maxBDataLen = maxBDataLen;

ret = DeviceIoControl(capi_handle,

CAPI_CTL_REGISTER,
&r,
sizeof(struct capi_register_params),
NULL,
0,
&ret_bytes,
NULL);

 Windows XP (Device Driver Level) 181

8.20.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. This
signals to COMMON-ISDN-API that all resources allocated by COMMON-ISDN-
API for the application can be released.

CAPI_RELEASE CAPI_CTL_RELEASE

Implementation

A CAPI_RELEASE can be performed in one of two ways. If the same handle is to be used
again, a CAPI_CTL_RELEASE must be sent. If the handle is no longer needed, the CAPI20
device may simply be closed using CloseHandle.

Example:

ret = DeviceIoControl(capi_handle,
 CAPI_CTL_RELEASE,
 NULL,
 0,
 NULL,
 0,
 &ret_bytes,
 NULL);

or

CloseHandle(capi_handle);

182 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.20.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application is identified by a file handle.

CAPI_PUT_MESSAGE WriteFile()/CAPI_CTL_PUT_MESSAGE

Implementation

The CAPI_PUT_MESSAGE function can be performed using either a WriteFile()
operation or an INTERNAL_DEVICE_CONTROL IRP. The
INTERNAL_DEVICE_CONTROL method is available to kernel-mode applications
only.

1. WriteFile() operation

In the WriteFile() operation, one data buffer is sent to the CAPI20 device driver. This
buffer must contain the message and, in the case of a DATA_B3_REQ message, the
associated data. The data (if applicable) must be placed in the buffer immediately
following the message.

ret = WriteFile(capi_handle,
 (PVOID)msg, /* buffer for message + data */
 msg_length, /* length of message + data */
 &ret_bytes,
 &o_write);

The WriteFile() operation returns immediately, without waiting for any network event
(in normal CAPI_PUT_MESSAGE operation).

When the WriteFile() call returns control to the application, the message buffer can be
re-used.

2. INTERNAL_DEVICE_CONTROL

Kernel-mode applications may use an INTERNAL_DEVICE_CONTROL IRP with
the IO_CONTROL code CAPI_CTL_PUT_MESSAGE for the
CAPI_PUT_MESSAGE operation. With this IRP, a pointer to the following structure
is passed to the CAPI20 device driver in Parameters.DeviceControl.Type3InputBuffer:

struct {
 PVOID message;
 PVOID data;

 Windows XP (Device Driver Level) 183

};

The buffer passed in the message field can be re-used by the application as soon as the
INTERNAL_DEVICE_CONTROL IRP is completed. The buffer passed in the data
field can be re-used by the application as soon as the corresponding
DATA_B3_CONF message is received.

184 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.20.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application retrieves each message associated with the specified file handle which
was used in the CAPI_REGISTER operation.

CAPI_GET_MESSAGE ReadFile()/CAPI_CTL_GET_MESSAGE

Implementation

The CAPI_GET_MESSAGE operation can be performed either by calling ReadFile()
or by using an INTERNAL_DEVICE_CONTROL IRP. The
INTERNAL_DEVICE_CONTROL method is available to kernel-mode applications
only.

1. ReadFile() operation

In the ReadFile() operation, one data buffer is received from the CAPI20 device
driver. This buffer contains the message and, in the case of a DATA_B3_IND
message, the associated data. The data (if applicable) is located in the buffer
immediately following the message.

ret = ReadFile(capi_handle,
 buffer,
 buffer_size,
 &ret_bytes,
 &o_read);

The ReadFile() operation returns as soon as a COMMON-ISDN-API message is
available.

The size of the buffer provided by the application should be at least
MessageBufferSize + 512. If the buffer provided by the application is too small to
hold the message and the data, an error is returned and the excess data is lost.

 Windows XP (Device Driver Level) 185

2. INTERNAL_DEVICE_CONTROL

Kernel-mode applications may use an INTERNAL_DEVICE_CONTROL IRP with
the IO_CONTROL code CAPI_CTL_GET_MESSAGE for the CAPI_GET_-
MESSAGE operation. With this IRP, a pointer to the following structure is passed to
the CAPI20 device in Parameters.DeviceControl.Type3InputBuffer:

struct {
 PVOID message;
 PVOID data;
};

The CAPI20 device driver fills in the fields of this structure. When the
INTERNAL_DEVICE_CONTROL is completed, the message field contains a pointer
to the COMMON-ISDN-API message and, if the message is a DATA_B3_IND, the
data field contains a pointer to the associated data buffer.

The message buffer may be re-used by the CAPI20 driver as soon as the application
sends the next CAPI_CTL_GET_MESSAGE.

The data buffer may be re-used by the CAPI20 driver as soon as the application sends
a corresponding DATA_B3_RESP message.

186 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.20.1.5 CAPI_SET_SIGNAL

There is no CAPI_SET_SIGNAL function. The asynchronous signaling of a received
message is implicit in the completion of the corresponding message retrieval
operation, whether ReadFile() or INTERNAL_DEVICE_CONTROL.

 Windows XP (Device Driver Level) 187

8.20.2 Other Functions

8.20.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API manufacturer
identification. The parameter Controller (dword) contains the number of the controller
(bit 0..6) for which this information is requested. The application provides a buffer of
at least 64 bytes. COMMON-ISDN-API copies the identification, coded as a zero-
terminated ASCII string, to this buffer.

CAPI_GET_MANUFACTURER CAPI_CTL_GET_MANUFACTURER

Implementation

With this IO_CONTROL the manufacturer identification is read from the Common
ISDN API driver. A buffer of 64 bytes has to be provided by the application. The
manufacturer identification is returned as zero terminated ASCII string. If the size of
the incoming buffer of the io_control operation is larger or equal to sizeof (dword) the
buffer is interpreted as the parameter controller.

188 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.20.2.2 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number. The parameter Controller (dword) contains the
number of the controller (bit 0..6) for which this information is requested.

CAPI_GET_VERSION CAPI_CTL_GET_VERSION

Implementation

The version of the COMMON-ISDN-API is read using this IO_CONTROL. If the size of
the incoming buffer of the io_control operation is larger or equal to sizeof (dword) the
buffer is interpreted as the parameter controller. The application must provide a buffer
with the following structure:

struct capi_version_params {
 word CAPIMajor;
 word CAPIMinor;
 word ManufacturerMajor;
 word ManufacturerMinor;
};

 Windows XP (Device Driver Level) 189

8.20.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The parameter Controller (dword) contains the number of the
controller (bit 0..6) for which this information is requested. The application provides a
buffer of 8 bytes. COMMON-ISDN-API copies the serial number string to this
buffer. The serial number, a seven-digit number coded as a zero-terminated ASCII
string, is present in this buffer after the function has returned.

CAPI_GET_SERIAL_NUMBER CAPI_CTL_GET_SERIAL_NUMBER

Implementation

The COMMON-ISDN-API serial number is read from the driver using this
IO_CONTROL. If the size of the incoming buffer of the io_control operation is larger
or equal to sizeof (dword) the buffer is interpreted as the parameter controller. The
application must provide a buffer of 8 bytes. The serial number is returned as a zero-
terminated ASCII string.

190 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

8.20.2.4 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The parameter Controller (dword) contains the number of the controller (bit 0..6)
for which this information is requested. The profile structure retrieved is described at
the beginning of Chapter 8.

CAPI_GET_PROFILE CAPI_CTL_GET_PROFILE

Implementation

The COMMON-ISDN-API capabilities can be read from the driver using this
IO_CONTROL. If the size of the incoming buffer of the io_control operation is larger
or equal to sizeof (dword) the buffer is interpreted as the parameter controller. If the
size of the incoming buffer is less than sizeof (dword) or the parameter controller is
set to 0, the number of installed controller is returned.

 Index (Part II) 191

INDEX (PART II)
CAPI_FILENO

Linux ... 145
CAPI_GET_MANUFACTURER

Linux ... 140
Linux Kernel Level.. 154
MS-DOS.. 19
NetWare (CAPI_GetManufacturer)... 86
OS/2... 47
OS/2 PDD.. 62
UNIX... 73
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 33
Windows 95... 95
Windows 95 DevIo.. 120
Windows 95 VxD .. 106
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 168
Windows XP Device Driver .. 187

CAPI_GET_MESSAGE
Linux ... 138
Linux Kernel Level.. 152
MS-DOS.. 16
NetWare (CAPI_GetMessage) .. 85
OS/2... 44
OS/2 PDD.. 59
UNIX... 72
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 30
Windows 95... 95
Windows 95 DevIo.. 117
Windows 95 VxD .. 103
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 166
Windows XP Device Driver .. 184

CAPI_GET_PROFILE .. 9
Linux ... 143
Linux Kernel Level.. 157
MS-DOS.. 22
NetWare (CAPI_GetProfile) ... 89
OS/2... 50
OS/2 PDD.. 65
UNIX... 76
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 36
Windows 95... 95
Windows 95 DevIo.. 123
Windows 95 VxD .. 109
Windows 98... 125

192 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 171
Windows XP Device Driver .. 190

CAPI_GET_SERIAL_NUMBER
Linux ... 142
Linux Kernel Level.. 156
MS-DOS.. 21
NetWare (CAPI_GetSerialNumber) .. 88
OS/2... 49
OS/2 PDD.. 64
UNIX... 75
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 35
Windows 95... 95
Windows 95 DevIo.. 122
Windows 95 VxD .. 108
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 170
Windows XP Device Driver .. 189

CAPI_GET_VERSION
Linux ... 141
Linux Kernel Level.. 155
MS-DOS.. 20
NetWare (CAPI_GetVersion).. 87
OS/2... 48
OS/2 PDD.. 63
UNIX... 74
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 34
Windows 95... 95
Windows 95 DevIo.. 121
Windows 95 VxD .. 107
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 169
Windows XP Device Driver .. 188

CAPI_INSTALLED
Linux ... 144
Linux Kernel Level.. 158
OS/2... 51
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 37
Windows 95... 95
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 172

CAPI_MANUFACTURER
Linux Kernel Level.. 159
MS-DOS.. 23

 Index (Part II) 193

Windows 2000... 129
Windows 95... 95
Windows 95 VxD .. 110
Windows 98... 125
Windows NT ... 91

CAPI_PUT_MESSAGE
Linux ... 137
Linux Kernel Level.. 151
MS-DOS.. 15
NetWare (CAPI_PutMessage)... 84
OS/2... 43
OS/2 PDD.. 58
UNIX... 71
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 29
Windows 95... 95
Windows 95 DevIo.. 116
Windows 95 VxD .. 102
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 165
Windows XP Device Driver .. 182

CAPI_REGISTER
Linux ... 134
Linux Kernel Level.. 148
MS-DOS.. 12
NetWare (CAPI_Register)... 80
OS/2... 40
OS/2 PDD.. 55
UNIX... 68
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 26
Windows 95... 95
Windows 95 DevIo.. 113
Windows 95 VxD .. 99
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 162
Windows XP Device Driver .. 179

CAPI_RELEASE
Linux ... 136
Linux Kernel Level.. 150
MS-DOS.. 14
NetWare (CAPI_Release).. 83
OS/2... 42
OS/2 PDD.. 57
UNIX... 70
Windows 2000... 129
Windows 2000 Device Driver ... 132
Windows 3.x.. 28
Windows 95... 95
Windows 95 DevIo.. 115
Windows 95 VxD .. 101
Windows 98... 125
Windows 98 Device Driver ... 127

194 COMMON-ISDN-API Version 2.0 - Part II
 4th Edition

Windows NT ... 91
Windows NT Device Driver.. 93
Windows XP.. 164
Windows XP Device Driver .. 181

CAPI_SET_SIGNAL
Linux Kernel Level.. 153
MS-DOS.. 17
OS/2... 45
OS/2 PDD.. 60
Windows 2000 Device Driver ... 132
Windows 3.x.. 31
Windows 95... 95
Windows 95 DevIo.. 119
Windows 95 VxD .. 104
Windows 98... 125
Windows 98 Device Driver ... 127
Windows NT Device Driver.. 93
Windows XP Device Driver .. 186

CAPI_WAIT_FOR_MESSAGE
Linux ... 139

CAPI_WAIT_FOR_SIGNAL
Windows 2000... 129
Windows 95... 95
Windows 98... 125
Windows NT ... 91
Windows XP.. 167

	8	SPECIFICATIONS FOR COMMERCIAL OPERATING SYSTEMS	7
	8	Specifications for Commercial Operating Systems
	CAPI_GET_PROFILE
	8.1	MS-DOS
	8.1.1	Message Operations
	8.1.1.1	CAPI_REGISTER
	8.1.1.2	CAPI_RELEASE
	8.1.1.3	CAPI_PUT_MESSAGE
	8.1.1.4	CAPI_GET_MESSAGE

	8.1.2	Other Functions
	8.1.2.1	CAPI_SET_SIGNAL
	8.1.2.2	CAPI_GET_MANUFACTURER
	8.1.2.3	CAPI_GET_VERSION
	8.1.2.4.	CAPI_GET_SERIAL_NUMBER
	8.1.2.5	CAPI_GET_PROFILE
	8.1.2.6	CAPI_MANUFACTURER

	8.2	Windows 3.x (Application Level)
	8.2.1	Message Operations
	8.2.1.1	CAPI_REGISTER
	8.2.1.2	CAPI_RELEASE
	8.2.1.3	CAPI_PUT_MESSAGE
	8.2.1.4	CAPI_GET_MESSAGE

	8.2.2	Other Functions
	8.2.2.1	CAPI_SET_SIGNAL
	8.2.2.2	CAPI_GET_MANUFACTURER
	8.2.2.3	CAPI_GET_VERSION
	8.2.2.4	CAPI_GET_SERIAL_NUMBER
	8.2.2.5	CAPI_GET_PROFILE
	8.2.2.6	CAPI_INSTALLED

	8.3	OS/2 (Application Level)
	8.3.1	Message Operations
	8.3.1.1	CAPI_REGISTER
	8.3.1.2	CAPI_RELEASE
	8.3.1.3	CAPI_PUT_MESSAGE
	8.3.1.4	CAPI_GET_MESSAGE

	8.3.2	Other Functions
	8.3.2.1	CAPI_SET_SIGNAL
	8.3.2.2	CAPI_GET_MANUFACTURER
	8.3.2.3	CAPI_GET_VERSION
	8.3.2.4	CAPI_GET_SERIAL_NUMBER
	8.3.2.5	CAPI_GET_PROFILE
	8.3.2.6	CAPI_INSTALLED

	8.4	OS/2 (Device Driver Level)
	8.4.1	Message Operations
	8.4.1.1	CAPI_REGISTER
	8.4.1.2	CAPI_RELEASE
	8.4.1.3	CAPI_PUT_MESSAGE
	8.4.1.4	CAPI_GET_MESSAGE

	8.4.2	Other Functions
	8.4.2.1	CAPI_SET_SIGNAL
	8.4.2.2	CAPI_GET_MANUFACTURER
	8.4.2.3	CAPI_GET_VERSION
	8.4.2.4	CAPI_GET_SERIAL_NUMBER
	8.4.2.5	CAPI_GET_PROFILE

	8.5	UNIX
	8.5.1	Message Operations
	8.5.1.1	CAPI_REGISTER
	8.5.1.2	CAPI_RELEASE
	8.5.1.3	CAPI_PUT_MESSAGE
	8.5.1.4	CAPI_GET_MESSAGE

	8.5.2	Other Functions
	8.5.2.1	CAPI_GET_MANUFACTURER
	8.5.2.2	CAPI_GET_VERSION
	8.5.2.3	CAPI_GET_SERIAL_NUMBER
	8.5.2.4	CAPI_GET_PROFILE

	8.6	NetWare
	8.6.1	Message Operations
	8.6.1.1	CAPI_Register
	CAPI_ReceiveNotify
	8.6.1.2	CAPI_Release
	8.6.1.3	CAPI_PutMessage
	8.6.1.4	CAPI_GetMessage

	8.6.2	Other Functions
	8.6.2.1	CAPI_GetManufacturer
	8.6.2.2	CAPI_GetVersion
	8.6.2.3	CAPI_GetSerialNumber
	8.6.2.4	CAPI_GetProfile

	8.7	Windows NT (Application Level)
	8.8	Windows NT (Device Driver Level)
	8.9	Windows 95 (Application Level)
	8.9.1	DOS-based Applications
	8.9.2	Windows 3.x-based Applications (16-bit)
	8.9.3	Windows 95-based Applications (32-bit)

	8.10	Windows 95 (Device Driver Level)
	8.10.1	Message Operations
	8.10.1.1	CAPI_REGISTER
	8.10.1.2	CAPI_RELEASE
	8.10.1.3	CAPI_PUT_MESSAGE
	8.10.1.4	CAPI_GET_MESSAGE

	8.10.2	Other Functions
	8.10.2.1	CAPI_SET_SIGNAL
	8.10.2.2	CAPI_GET_MANUFACTURER
	8.10.2.3	CAPI_GET_VERSION
	8.10.2.4	CAPI_GET_SERIAL_NUMBER
	8.10.2.5	CAPI_GET_PROFILE
	8.10.2.6	CAPI_MANUFACTURER

	8.11	Windows 95 DeviceIoControl
	8.11.1	Message Operations
	8.11.1.1	CAPI_REGISTER
	8.11.1.2	CAPI_RELEASE
	8.11.1.3	CAPI_PUT_MESSAGE
	8.11.1.4	CAPI_GET_MESSAGE
	8.11.1.5	CAPI_SET_SIGNAL

	8.11.2	Other Functions
	8.11.2.1	CAPI_GET_MANUFACTURER
	8.11.2.2	CAPI_GET_VERSION
	8.11.2.3	CAPI_GET_SERIAL_NUMBER
	8.11.2.4	CAPI_GET_PROFILE

	8.12	Windows 98 (Application Level)
	8.12.1	DOS-based Applications
	8.12.2	Windows 3.x-based Applications (16-bit)
	8.12.3	Win32-based Applications (32-bit)

	8.13	Windows 98 (Device Driver Level)
	Windows 95-based Virtual Device Driver (VxD)
	8.13.2	Win32 Driver Model-based Device Driver (WDM)

	8.14	Windows 2000 (Application Level)
	8.15	Windows 2000 (Device Driver Level)
	8.16	Linux
	8.16.1	Message Operations
	8.16.1.1	CAPI_REGISTER
	8.16.1.2	CAPI_RELEASE
	8.16.1.3	CAPI_PUT_MESSAGE
	8.16.1.4	CAPI_GET_MESSAGE

	8.16.2	Other Functions
	8.16.2.1	CAPI_WAIT_FOR_MESSAGE
	8.16.2.2	CAPI_GET_MANUFACTURER
	8.16.2.3	CAPI_GET_VERSION
	8.16.2.4	CAPI_GET_SERIAL_NUMBER
	8.16.2.5	CAPI_GET_PROFILE
	8.16.2.6	CAPI_INSTALLED
	8.16.2.7	CAPI_FILENO

	8.17	Linux (Kernel Level)
	8.17.1	Message Operations
	8.17.1.1	CAPI_REGISTER
	8.17.1.2	CAPI_RELEASE
	8.17.1.3	CAPI_PUT_MESSAGE
	8.17.1.4	CAPI_GET_MESSAGE

	8.17.2	Other Functions
	8.17.2.1	CAPI_SET_SIGNAL
	8.17.2.2	CAPI_GET_MANUFACTURER
	8.17.2.3	CAPI_GET_VERSION
	8.17.2.4	CAPI_GET_SERIAL_NUMBER
	8.17.2.5	CAPI_GET_PROFILE
	8.17.2.6	CAPI_INSTALLED
	8.17.2.7	CAPI_MANUFACTURER

	8.18	Windows XP 32bit (Application Level)
	8.18.1	Message Operations
	8.18.1.1	CAPI_REGISTER
	8.18.1.2	CAPI_RELEASE
	8.18.1.3	CAPI_PUT_MESSAGE
	8.18.1.4	CAPI_GET_MESSAGE

	8.18.2	Other Functions
	8.18.2.1	CAPI_WAIT_FOR_SIGNAL
	8.18.2.2	CAPI_GET_MANUFACTURER
	8.18.2.3	CAPI_GET_VERSION
	8.18.2.4	CAPI_GET_SERIAL_NUMBER
	8.18.2.5	CAPI_GET_PROFILE
	8.18.2.6	CAPI_INSTALLED

	8
	8.19	Windows XP 64bit (Application Level)
	8.20	Windows XP (Device Driver Level)
	8.20.1	Message Operations
	8.20.1.1	CAPI_REGISTER
	8.20.1.2	CAPI_RELEASE
	8.20.1.3	CAPI_PUT_MESSAGE
	8.20.1.4	CAPI_GET_MESSAGE
	8.20.1.5	CAPI_SET_SIGNAL

	8.20.2	Other Functions
	8.20.2.1	CAPI_GET_MANUFACTURER
	8.20.2.2	CAPI_GET_VERSION
	8.20.2.3	CAPI_GET_SERIAL_NUMBER
	8.20.2.4	CAPI_GET_PROFILE

	Index (Part II)

