COMMON-ISDN-API

Version 2.0

Part ||

Operating Systems

A" Edition

June 2001

Author:
CAPI Association e.V.
All rights reserved

Editor:
AVM GmbH, Germany

E-mail: hj.ortmann@avm.de

4th Edition / June 2001

Publisher:

CAPI Association e.V.
http://www.capi.org/

Contents (Part II)

8 SPECIFICATIONS FOR COMMERCIAL OPERATING SYSTEMScccoiiiiiieeeneee e 7
CAPI_GET_PROFILE ..ottt n ettt et nn et 9
8.1 IMS-DOS ..t 11

8.1.1 MESSAGE OPEIALIONSveiveerieeiiesieste et ete e et e e e e e s et e e te st e steeneesae e esestesbenreaneeneeseenseneenrennes 12
8.1.1.1 CAPI_REGISTER ...ttt 12
8.1.1.2 CAPI_RELEASE...... .ottt 14
8.1.1.3 CAPI_PUT_MESSAGEctiiiitiitiicistee ettt 15
8.1.1.4 CAPI_GET_MESSAGE ...ttt 16

8.1.2 OhEE FUNCHIONS ... bbb bbbt e et e r e e e e b e sbe b e 17
8.1.2.1 CAPI_SET_SIGNAL ..ottt 17
8.1.2.2 CAPI_GET_MANUFACTURERccoitiiiitieiit et 19
8.1.2.3 CAPI_GET_VERSION ...ttt 20
8.1.2.4. CAPI_GET_SERIAL_NUMBERcccitiiiiiicneeeneeese e 21
8.1.25 CAPI_GET_PROFILEcot ittt 22
8.1.2.6 CAPI_MANUFACTURERcctiirtiiiiieee e 23

8.2 WINDOWS 3.X (APPLICATION LEVEL) ..cvveviieitestesieeteeestestestestesseeseeseesesaessessessassaesaessesaessnssnsssssessensenssnns 25

8.2.1 MESSAGE OPEIALIONSveiieiie ettt ettt bttt b et b e s b e st e s e et et e sbesb e st e e bt es e e s e nbenbeebenns 26
8.2.1.1 CAPI_REGISTER ...ttt bbb 26
8.2.1.2 CAPI_RELEASE. ...ttt 28
8.2.1.3 CAPI_PUT_MESSAGE ..ottt 29
8.2.1.4 CAPI_GET_MESSAGE ..ottt 30

8.2.2 OhEE FUNCHIONS ...t bttt e e bbbt bt e st e nn e b b sbe b e 31
8.2.2.1 CAPI_SET_SIGNAL ...ttt 31
8.2.22 CAPI_GET_MANUFACTURERcciiiiiiiiiciit e 33
8.2.2.3 CAPI_GET_VERSION ...ttt 34
8.2.24 CAPI_GET_SERIAL_NUMBERcccotiiiinicneereeese e 35
8.2.25 CAPI_GET_PROFILE ..ottt e 36
8.2.2.6 CAPI_INSTALLED ..ottt 37

8.3 OS/2 (APPLICATION LEVEL) c.tittitiiteetieuie sttt sttt ettt ettt sae sttt se et e be b sbe st e be et e e e esbesaesbesbeebeebeaneennennens 39

8.3.1 MESSAGE OPEIALIONSveiieiie ettt ettt bttt ettt b et b e st e st e s e et et e sbesb e b e e bt an e e e e benbeebeanes 40
8.3.1.1 CAPI_REGISTER ...ttt bbb 40
8.3.1.2 CAPI_RELEASE. ...ttt 42
8.3.1.3 CAPI_PUT_MESSAGE ...ttt 43
8.3.1.4 CAPI_GET_MESSAGE ...ttt 44

8.3.2 OLNEE FUNCEIONS ...ttt ens 45
8.3.2.1 CAPI_SET_SIGNAL ...ttt 45
8.3.22 CAPI_GET_MANUFACTURERcctiiiiiiiicir s 47
8.3.2.3 CAPI_GET_VERSION ..ottt 48
8.3.24 CAPI_GET_SERIAL_NUMBERccocitiiiiricerieereeese e 49
8.3.25 CAPI_GET_PROFILE ..ottt 50
8.3.2.6 CAPI_INSTALLED ...ttt 51

8.4 OS/2 (DEVICE DRIVER LEVEL) .c.tiitiiiieiieitesie sttt ettt ettt ettt bbb b b e e et et sbesbesbeebeaneaneennens 53

8.4.1 MESSAGE OPEIALIONSeiieiie ettt ettt b ettt b et b e st e bt e b e e e e b e bt eb e st e e bt en e e e e besbeebeenes 55
8.4.1.1 CAPI_REGISTERoiiiiiticite bbb bbb 55
8.4.1.2 CAPI_RELEASE.......ci ittt 57
8.4.1.3 CAPI_PUT_MESSAGEcotiiiiiiieieeeee e 58
8.4.1.4 CAPI_GET_MESSAGE ...ttt 59

8.4.2 OLNEE FUNCEIONS ...ttt nrens 60
8.4.2.1 CAPI_SET_SIGNAL ...ttt 60
8.4.22 CAPI_GET_MANUFACTURERccoiiiiiiiiese s 62
8.4.2.3 CAPI_GET_VERSIONcoiiiiiiiicist s 63
8.4.2.4 CAPI_GET_SERIAL_NUMBERcccotiiiitiiireesee e 64
8.4.25 CAPI_GET_PROFILE ..ottt 65

8.5 UINDX ettt bbb bR R R R R bR R bbbt 67
8.5.1 MESSAGE OPEIALIONSveiieiie ettt ettt bttt ettt b et b e s b e st e s e et et e sbesb e st e e bt es e e e e benbeebeenes 68

Contents (Part II) 3

8.5.1.1 CAPI_REGISTERoiiiiiiiitee s 68

8.5.1.2 CAPI_RELEASE. ...tttk 70
8.5.1.3 CAPI_PUT_MESSAGEcceotiriiriicesree st 71
8.5.14 CAPI_GET_MESSAGE ...t 72

8.5.2 (@11 1= g N o 1o OSSR 73
8521 CAPI_GET_MANUFACTURERcoiiiiiiircinct e 73
8.5.22 CAPI_GET_VERSIONciiiiiiiiincene e 74
8523 CAPI_GET_SERIAL_NUMBERccciiiiriiiiieinse s 75
8.5.24 CAPI_GET _PROFILEco ittt bbbttt 76

8.6 INETWVARE ...ttt ittt ettt ettt et b ekt e st h bt e b e e b e e ek e e ebe e R b e e R e e e Rt e eb £ ekt en ke eb b e nb e e nbe e nbeenbeenb e e b e enneene e e 77
8.6.1 MESSAGE OPEIALIONSveiieiie ettt ettt bttt b et b e s b e st e s e et et e sbesb e st e e bt es e e s e nbenbeebenns 80
8.6.1.1 CAPI _ REOISTEN ...ttt et bbb b bbbt e e b e eae e 80
CAPI_RECEIVENOLITY ...t bbbttt b et bbbt e st e e et et e sbenbesbeaneas 82
8.6.1.2 CAPI _REICASE.....cee ettt et ae e ae e re e be e beere e 83
8.6.1.3 CAPI _PUIMESSAJE.......cueiiieiieiietieeiesiesee e e ste e seesee s e sseesteesta e teentessaesseesreesaeesteaneeaneeaneenneenes 84
8.6.1.4 CAPI_GELIMESSAE .. .o ovvieeeertieiiesieesiestteseesteesteeseeasteaseesseesseestaesseensessaesseesseesaeesseanessneesseenseenes 85

8.6.2 L0111 g N o 1o SO S TP PP 86
8.6.2.1 CAPI_GEtMaNUTACIUIETeci ettt sa e nesresneens 86
T A O A o B T A =T £ To] o S 87
8.6.2.3 CAPI_GetSerialNUMDETcveieiececec et 88
8.6.2.4 CAPI_GEtPIOFIlE ..ottt 89

8.7 WINDOWS NT (APPLICATION LEVEL)....eiitiitiitiitisiiaiieiesieste sttt e e e see st sbe st sbesbe s e eseesaesaesbesbesbesneannennens 91
8.8 WINDOWS NT (DEVICE DRIVER LEVEL)....ccutiutitiiiiaiiaiesiesie sttt ettt sttt e e e sbe st b sbe e eneennns 93
8.9 WINDOWS 95 (APPLICATION LEVEL) .uiitiiiitestieieeieeeeste st sttt et e st st sbesbe e eseesaesbesbesbesbeaneaneennens 95
8.9.1 DOS-based APPIICALIONS. ..ottt bbb bbb s 95
8.9.2 Windows 3.x-based Applications (16-Dit)cccceiieiiiiiiiiee e 95
8.9.3 Windows 95-based Applications (32-Dit).......ccccviieieriiiiiisisecre e 95
8.10 WINDOWS 95 (DEVICE DRIVER LEVEL) ...eviiuiitiiiieiieieiestesiestesteeseeseeeesaessessessessaesasssesaessessnssessessesseeseens 97
8.10.1 MESSAPE OPEIALIONSc.veveeeivisieeeeerieiete e ste s e sreereesseseeseestestesaesreaseeseeseensestestesteaneereensenseseeneenreaneas 99
8.10.1.1 CAPI_REGISTER ..ottt 99
8.10.1.2 CAPI_RELEASEciiitiiieieee et 101
8.10.1.3 CAPI_PUT_MESSAGEcotitiiiirieiiete ettt bbb 102
8.10.1.4 CAPI_GET_MESSAGE ..ottt bbbttt 103
8.10.2 OtNEE FUNCLIONS. ...ttt sttt bbbt bttt se e b e s be bt e b e bt en e e e e beneesbeebe e 104
8.10.2.1 CAPI_SET _SIGNAL ...ttt ettt 104
8.10.2.2 CAPI_GET_MANUFACTURERcciitiitiirieititsisie ettt 106
8.10.2.3 CAPI_GET_VERSION ..ottt ettt st 107
8.10.2.4 CAPI_GET_SERIAL_NUMBERccectsiiiriiiirieneee s 108
8.10.2.5 CAPI_GET_PROFILEcooiiiiiirireis e 109
8.10.2.6 CAPI_MANUFACTURER.......c.cccotitretiiriteiine s 110

8.11 WINDOWS 95 DEVICEIOCONTROLcivvrreiiireienreresessssesessesesesesseessesesesssseseseesssessssesesessesesnsnesessssesennas 111
8.11.1 MeSSAPE OPEIALIONSeeveeeivisreeteeiestes et stestesseesee e e e saestestesreere e e eseeseestestesresteaneaneeseenseneenrenreens 113
8.11.1.1 CAPI_REGISTER ..ottt bbbt bbbttt 113
8.11.1.2 CAPI_RELEASE ..ottt bbbt 115
8.11.1.3 CAPI_PUT_MESSAGEcotiiiirieieirte ettt 116
8.11.1.4 CAPI_GET_MESSAGE ..ottt ettt 117
8.11.1.5 CAPI_SET _SIGNALoitiiitiii ettt ettt 119
B.11.2 OtNEE FUNCLIONS. ... ittt ettt bbbt bbb e e e b st bt e b et e ne e e e beneesbeere e 120
8.11.2.1 CAPI_GET_MANUFACTURERcceitiiiireiinieinreee e 120
8.11.2.2 CAPI_GET_VERSION ..ottt 121
8.11.2.3 CAPI_GET_SERIAL_NUMBERccectiiiiiriiitnieneee s 122
8.11.2.4 CAPI_GET_PROFILEcooiiiiiirieeseesre e 123

8.12 WINDOWS 98 (APPLICATION LEVEL) .ovviviieiieiteeieeeeiestes e steste s e enseseessestesreste e aneesaensessesnessesnasnassesnsenes 125
8.12.1 DOS-based APPIICALIONS......ccviviieieiire st nreere e 125
8.12.2 Windows 3.x-based Applications (16-Dit).........cccoeriiiiiiiiiiii e 125
8.12.3 Win32-based Applications (32-DiIt)ccoriiiiiiiiii i 125
8.13 WINDOWS 98 (DEVICE DRIVER LEVEL) ...ctiiuiitiiiiiiieieite ettt st sttt bbbt e 127
8.13.1 Windows 95-based Virtual Device DFIVEr (VXD)cccoeiiiiiiiiiiieieeie s 127
8.13.2 Win32 Driver Model-based Device Driver (WDM).........cocuieiiriiiiie e 127
8.14 WINDOWS 2000 (APPLICATION LEVEL) ...ouiiuiitiiiiaiieienie ettt e et st sttt e e e bt snesne e e 129
8.15 WINDOWS 2000 (DEVICE DRIVER LEVEL) ..iiutitiiieiieieseesiestesteseeseeseessesteseessessesssesssssesssssessesssssessessenes 131

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

S0 T 1 N6) OO 133

8.16.1 MESSAPE OPEIALIONSeteieitieteiiieiie ittt sttt ettt bbbt bt et et e sb e seesbesbe bt ebe e bt ane et e beneesbesbe e 134
8.16.1.1 CAPI_REGISTERcoititiiitirieiete sttt sttt et nneneenes 134
8.16.1.2 CAPI_RELEASE ...ttt ettt bbb ene e 136
8.16.1.3 CAPI_PUT_MESSAGE.......cctiiiitiieinte ettt 137
8.16.1.4 CAPI_GET_MESSAGE.......cciitiitieiit ettt et be et s sbe e abe e 138

B.16.2 OLNEI FUNCLIONSeviitiititietiiteet ettt bbbt bbbttt 139
8.16.2.1 CAPI_WAIT_FOR_MESSAGEceoitiiiiiit ettt 139
8.16.2.2 CAPI_GET_MANUFACTURERcccot ittt 140
8.16.2.3 CAPI_GET_VERSIONcotitiiiiitiiiisti ettt be s ase st sens 141
8.16.2.4 CAPI_GET_SERIAL_NUMBERcccoiitiiiiiiiiit ettt st nns 142
8.16.2.5 CAPI_GET _PROFILEcotiiiiiiiiiiei ettt 143
8.16.2.6 CAPI_INSTALLEDociiiitite ettt sttt sttt st et sb et e 144
8.16.2.7 CAPI_FILENOD ..ottt s bt es et b ne et et nnn 145

8.17 LINUX (KERNEL LEVEL)vtittiteitieteeieiestestestestessaessesaestestessestesseassessessestessessesseassesssnsessessessesssssesssnnsenes 147

8.17.1 MESSAPE OPEIALIONSveveeeireeieireeiestes et stesresseeree e e e seestesresteere e e eseeseesaeseesaesteaneaneeseenteseenrenreans 148
8.17.1.1 CAPI_REGISTER ..ottt bbbttt nneneenes 148
8.17.1.2 CAPI_RELEASE ...ttt ettt sttt bbbttt 150
8.17.1.3 CAPI_PUT_MESSAGE ...ttt ettt 151
8.17.1.4 CAPI_GET_MESSAGE.......cciitiitiieiit ettt ettt sttt e ane e 152

SIS O A © 1 1= gl ¥ o1 T o USSR 153
8.17.2.1 CAPI_SET SIGNAL ...ttt sttt sttt sttt sb et st seetesbe e tesbeeate e 153
8.17.2.2 CAPI_GET_MANUFACTURERcccctitiitiiste sttt 154
8.17.2.3 CAPI_GET_VERSIONcctitiiiiiiiiiisti sttt sttt ba s ase st naensens 155
8.17.2.4 CAPI_GET_SERIAL_NUMBERccoiitititiiict ettt saene e 156
8.17.2.5 CAPI_GET_PROFILEciiiiiietiieree ettt 157
8.17.2.6 CAPIINSTALLED ..ottt ettt sttt ebe e 158
8.17.2.7 CAPI_MANUFACTURERcotitiiiitiest sttt 159

8.18 WINDOWS XP 32BIT (APPLICATION LEVEL) .uiitviteeuieieieesiestestesiesseeseesiestessessesseassesesssessessessessessensessennes 161

8.18.1 MESSAPE OPEIALIONSeveeeiriereereeie st es e st ste s e sseeree e e e seestesteareere e e eseeseesaestestesteaneaneeseenseneenrenreens 162
8.18.1.1 CAPI_REGISTER ..ottt ettt st nneneenes 162
8.18.1.2 CAPI_RELEASE ...ttt ettt sttt sb et sttt b et ans 164
8.18.1.3 CAPI_PUT _MESSAGEcctiiiiiiiiei sttt enn 165
8.18.1.4 CAPI_GET _MESSAGE.......ccoootititiiieeitt ettt sttt sttt st ra st st nesbeseerasbe e 166

8.18.2 Other FUNCLIONS.......cviiiiiie ettt e e s be et e s e e s ae e sbe e e beebeesbe e st e steesteesreesteeneas 167
8.18.2.1 CAPI_WAIT_FOR _SIGNAL ...octiiiiiiieisieiet ettt senn 167
8.18.2.2 CAPI_GET_MANUFACTURERccocctiiiitieistt sttt 168
8.18.2.3 CAPI_GET_VERSION ..ottt ettt ettt 169
8.18.2.4 CAPI_GET_SERIAL_NUMBERccciiiiiitiiiit ettt 170
8.18.2.5 CAPI_GET_PROFILEctiiiiiiiiriee et 171
8.18.2.6 CAPI_INSTALLEDoctiiiiii ettt sttt 172

8.19 WINDOWS XP 64BIT (APPLICATION LEVEL) .uiivviiveuieriesiesiestestesseeseeeessesseseessessesseesesssesssssessessessessesseenes 173
8.20 WINDOWS XP (DEVICE DRIVER LEVEL) w.c.uiitiiuiiiiiiieieniesie sttt st sttt bbb e 175

8.20.1 MESSAPE OPEIALIONSeteieitieieiiieiee ettt sttt ettt bbb bt et et e b e e e besbeebeebe e bt ane e e ebeseesbeebe e 179
8.20.1.1 CAPI_REGISTERccoctiiiittiteiettsteiee sttt ettt eba st esesbesaesansensenen 179
8.20.1.2 CAPI_RELEASE ..ottt ettt ettt sttt bbbt nb e ene e 181
8.20.1.3 CAPI_PUT _MESSAGEcciitiitiiiei sttt enn 182
8.20.1.4 CAPI_GET _MESSAGE........cicotitititeistt ettt sttt sttt sbe st ra st st sestesserasbe e 184
8.20.1.5 CAPI_SET _SIGNAL ...ttt ettt sb ettt sb e ene e 186

8.20.2 OtNEI FUNCLIONSeviitiiitietiite sttt bbbt b ettt st 187
8.20.2.1 CAPI_GET_MANUFACTURERccoiitiiiitiiict et 187
8.20.2.2 CAPI_GET_VERSION ..ottt sttt nae s 188
8.20.2.3 CAPI_GET_SERIAL_NUMBERccciiiititiiiit ettt 189
8.20.2.4 CAPI_GET_PROFILE ..ottt 190

INDEX (PART 1) cootiiteiie ettt sttt sttt st s b et sttt st e s e et st e st et b e b e be st e be e be et et e besbe s eneebeeeneane 191

Contents (Part II) 5

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8

SPECIFICATIONS FOR COMMERCIAL OPERATING SYSTEMS

COMMON-ISDN-API can be used with the following operating systems:

8.1 MS-DOS

8.2 Windows 3.x application level

8.3 OS/2 application level

8.4 OS/2 device driver level

8.5 UNIX

8.6 NetWare

8.7 Windows NT application level

8.8 Windows NT device driver level

8.9 Windows 95 application level

8.10 Windows 95 device driver level
8.11 Windows 95 10Ctl Access

8.12 Windows 98 application level

8.13 Windows 98 device driver level
8.14 Windows 2000 application level
8.15 Windows 2000 device driver level
8.16 Linux application level

8.17 Linux kernel level

8.18 Windows XP 32bit application layer
8.19 Windows XP 64bit application layer
8.20 Windows XP device driver level

All operating systems support the following COMMON-ISDN-API operations:

CAPI_REGISTER Register application with COMMON-ISDN-API
CAPI_RELEASE Release application from COMMON-ISDN-API
CAPI_PUT_MESSAGE Transfer message to COMMON-ISDN-API
CAPI_GET_MESSAGE Retrieve message from COMMON-ISDN-API
CAPI_GET_MANUFACTURER Get manufacturer information from COMMON-ISDN-API
CAPI_GET_VERSION Get version information from COMMON-ISDN-API
CAPI_GET_SERIAL_NUMBER Get serial number of COMMON-ISDN-API
CAPI_GET_PROFILE Get capability information from COMMON-ISDN-API

Depending on the operating system, the following COMMON-ISDN-API operations may also be available:

CAPI_SET_SIGNAL Install call-back function

CAPI_WAIT_FOR_SIGNAL Wait for COMMON-ISDN-API message
CAPI_INSTALLED Check whether COMMON-ISDN-API is installed
CAPI_MANUFACTURER Manufacturer-specific COMMON-ISDN-API operation

Chapter 8: Specifications for Commercial Operating Systems

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

CAPI_GET_PROFILE

CAPI_GET_PROFILE is used to obtain information on COMMON-ISDN-API’s implemented capabilities.
This operation fills in a buffer with the following structure:

Type Description

2 bytes Number of controllers installed, least significant byte first
2 bytes Number of supported B-channels, least significant byte first
4 bytes Global Options (bit field):

[0]: Internal controller supported

[1]: External equipment supported

[2]: Handset supported (external equipment must also be set)

[3]: DTMF supported

[4]: Supplementary Services supported (see Part 111)

[5]: Channel allocation supported (leased lines)

[6]: Parameter B channel operation supported

[7]: Line Interconnect supported

[8]...[31]: reserved

4 bytes B1 protocols support (bit field):

[0]: 64 kbit/s with HDLC framing, always set.

[1]: 64 kbit/s bit-transparent operation with byte framing
from the network

[2]: V.110 asynchronous operation with start/stop byte
framing

[3]: V.110 synchronous operation with HDLC framing

[4]: T.30 modem for Group 3 fax

[5]: 64 kbit/s inverted with HDLC framing.

[6]: 56 kbit/s bit-transparent operation with byte framing
from the network

[7]: Modem with all negotiations

[8]: Modem asynchronous operation with start/stop byte
framing

[9]: Modem synchronous operation with HDLC framing

[10]..[31]: reserved

4 bytes B2 protocol support (bit field):

[0]: ISO 7776 (X.75 SLP), always set

[1]: Transparent

[2]: sDLC

[3]: LAPD in accordance with Q.921 for D channel X.25
(SAPI 16)

[4]: T.30 for Group 3 fax

[5]: Point-to-Point Protocol (PPP)

[6]: Transparent (ignoring framing errors of B1 protocol)

[7]: Modem error correction and compression (V.42 bis or
MNP5)

[8]: 1ISO 7776 (X.75 SLP) modified supporting V.42 bis
compression

[9]: V.120 asynchronous mode

[10]: V.120 asynchronous mode supporting V.42 bis

[11]: V.120 bit-transparent mode

[12]: LAPD in accordance with Q.921 including free SAPI
selection

[13]..[31]: reserved

Chapter 8: Specifications for Commercial Operating Systems 9

4 bytes

B3 protocol support (bit field):

[0]: Transparent, always set

[1]: T.9ONL with compatibility to T.70NL in accordance with
T.90 Appendix II.

[2]: 1SO 8208 (X.25 DTE-DTE)

[3]: X.25 DCE

[4]: T.30 for Group 3 fax

[5]: T.30 for Group 3 fax with extensions

[6]: reserved

[7]: Modem

[8]..[31]: reserved

24 bytes

reserved for COMMON-ISDN-API use

20 bytes

Manufacturer-specific information

CAPI_GET_PROFILE structure format

An application must ignore unknown bits. COMMON-ISDN-API sets every reserved field to 0.

10

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.1 MS-DOS

As MS-DOS does not provide any multitasking facilities, COMMON-ISDN-API is incorporated into the sys-
tem as a background (terminate and stay resident) driver. The interface between the application and COMMON-
ISDN-API is implemented using a software interrupt. The vector used for this must be configurable both in
COMMON-ISDN-API and in the application. The default value for the software interrupt is 241 (OxF1). If
another value is to be used, it can be specified as a parameter when COMMON-ISDN-API is installed.

The functions described below are defined by appropriate processor register assignments in this software
interrupt interface. The return values and parameters are normally provided in registers AX and ES:BX.
Registers AX, BX, CX, DX and ES can be modified; other registers are preserved. COMMON-ISDN-API is
allowed to enable interrupts during processing of these functions.

COMMON-ISDN-API requires a maximum stack area of 512 bytes for the execution of all the functions in-
corporated. This stack space must be furnished by the application program. While processing the software
interrupt, COMMON-ISDN-API may enable and/or disable interrupts.

The software interrupt for COMMON-ISDN-API is defined according to the BIOS interrupt chaining structure.

API PROC FAR ; ISDN-API interrupt service
JMP SHORT doit ; jump to start of routine
DD ? ; chained interrupt
DW 424BH ; interrupt chaining signature
DB 80H ; first-in-chain flag
DW ? ; reserved, should be 0
DB '‘CAPI ; COMMON-ISDN-API signature
DB 20 ; Version number

doit:

The characters 'CAPI20' can be requested by the application to ascertain the presence of COMMON-ISDN-
API.

The pointer specified in the messages DATA B3 _REQ and DATA B3 _IND is implemented as a FAR pointer
under MS-DOS.

Memory layout is in conformance with MS-DOS.

Chapter 8.1: MS-DOS 11

8.1.1 Message Operations

8.11.1 CAPI_REGISTER

12

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. In doing so, the application provides COMMON-ISDN-API with a mem-
ory area. A FAR pointer to this memory area is transferred in registers ES:BX. The
size of the memory area is calculated by the following formula:

CX + (DX * SI * DI)

The size of the message buffer used to store messages is transferred in the CX register.
Setting this value too small will result in messages being lost. For a typical
application, the amount of memory required should be calculated by the following
formula:

CX = 1024 + (1024 * DX)

In the DX register, the application indicates the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional logical
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

In the SI register, the application sets the maximum number of received data blocks
that can be reported to the application simultaneously for each logical connection. The
number of simultaneously available data blocks has a decisive effect on the data
throughput in the system and should be between 2 and 7. At least two data blocks must
be specified.

In the DI register the application specifies the maximum size of the application data
block to be transmitted and received. Selection of a protocol that requires larger data
units, or attempts to transmit or receive larger data units, will result in an error
indication from COMMON-ISDN-API. The default value for the protocol ISO 7776
(X.75) is 128 octets. COMMON-ISDN-API is able to support at least up to 2048
octets.

The application ID number is returned in AX. In the event of an error, the value 0 is
returned in AX, and the cause of the error is indicated in BX.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

[CAPI REGISTER

| 0x01 |

Parameter Comment

AH Version number 20 (0x14)

AL Function code 0x01

ES:BX FAR pointer to a memory block provided by the application.
This memory area can (but need not) be used by COMMON-
ISDN-API to manage the message queue of the application.
In addition, COMMON-ISDN-API can (but also need not)
present the received data in this memory area.

CX Size of message buffer

DX Maximum number of Layer 3 connections

Sl Number of B3 data blocks available simultaneously

DI Maximum size of a B3 data block

Return Value

Return Value Comment
AX <>0 Application number (ApplID)
0x0000 Registration error, cause of error in BX register
BX If AX == 0, coded as described in parameter Info, class
0x10xx
Note

If the application intends to open a maximum of one Layer 3 connection at a time and
use the standard protocols, the following register assignments are recommended:

CX =2048, DX =1,S1=7,DI =128

The resulting memory requirement is 2944 bytes.

Chapter 8.1: MS-DOS

13

8.1.1.2

14

Description

CAPI_RELEASE

The application uses this function to log out from COMMON-ISDN-API. The mem-
ory area indicated in the application’s CAPI_REGISTER call is released. The
application is identified by the application number in the DX register. Any errors that
occur are returned in AX.

[CAPI RELEASE 0x02 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x02
DX Application number

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Registration error, coded as described in parameter Info, class

0x11xx

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.1.1.3 CAPI_PUT_MESSAGE

Description

With this function the application transfers a message to COMMON-ISDN-API. A
FAR pointer to the message is passed in the ES:BX registers. The application is
identified by the application number in the DX register. Any errors that occur are

returned in AX.

[CAPI PUT MESSAGE

0x03 |

Parameter Comment

AH Version number 20 (0x14)
AL Function code 0x03

ES:BX FAR pointer to the message
DX Application number

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class Ox11xx
Note

After returning from the CAPI_PUT_MESSAGE call, the application can re-use the
memory area of the message. The message is not modified by COMMON-ISDN-

API.

Chapter 8.1: MS-DOS

15

8.1.1.4 CAPI_GET_MESSAGE

Description

With this function the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve messages intended for the specified application
number. A FAR pointer to the message is passed in the ES:BX registers. The function
returns immediately, even if no message was queued for retrieval. Register AX
contains the corresponding error value. The application is identified by the application
number in the DX register. Any errors that occur are returned in AX.

[CAPI GET MESSAGE

0x04 |

Parameter Comment

AH Version number 20 (0x14)
AL Function code 0x04

DX Application number

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
ES:BX FAR pointer to message, if available
Note

The message may be made invalid by the next CAPI_GET_MESSAGE call.

16

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.1.2 Other Functions

8.1.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate the use of an interrupt call-back func-
tion. A FAR pointer to an interrupt call-back function is specified in the ES:BX regis-
ters. The signaling function can be deactivated by a CAPI_SET_SIGNAL with the
register assignment ES:BX = 0000:0000. The application is identified by the applica-
tion number in the DX register. Any errors that occur are returned in the AX register.

[CAPI SET SIGNAL | 0x05 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x05
DX Application number
SI:DI Parameter to be passed to call-back function
ES:BX FAR pointer to call-back function

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
Note

The call-back function is called as an interrupt by COMMON-ISDN-API after

+ any message is queued in the application's message queue,
« an announced busy condition is cleared, or
+ an announced queue-full condition is cleared.

Interrupts are disabled. The call-back function must be terminated by IRET. All regis-
ters must be preserved. When the function is called, at least 32 bytes are available on
the stack.

Chapter 8.1: MS-DOS 17

18

The call-back function is called with interrupts disabled. COMMON-ISDN-API shall
not call this function recursively, even if the call-back function enables interrupts. In-
stead, the call-back function shall be called again after it returns control to
COMMON-ISDN-API.

The call-back function is allowed to use the COMMON-ISDN-API operations
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE, and CAPI_SET_SIGNAL. If it
does so, the application must take into account the fact that interrupts may be enabled
by COMMON-ISDN-API.

In the case of local confirmations (such as LISTEN_CONF), the call-back function
may be called before the operation CAPI_PUT_MESSAGE returns control to the
application.

Registers DX, Sl and DI are passed to the call-back function with the same values as
the corresponding parameters to CAPI_SET_SIGNAL.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.1.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API
manufacturer identification. The application provides a FAR pointer to a data area of
64 bytes in registers ES:BX. The manufacturer identification, coded as a zero-
terminated ASCII string, is present in this data area after the function has been

executed.
[CAPI GET MANUFACTURER | 0xFO0 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xFO
ES:BX FAR pointer to buffer

Return Value

Return Comment
ES:BX Buffer contains manufacturer identification in ASCII. The
end of the identification is indicated by a zero byte.

Chapter 8.1: MS-DOS 19

8.1.2.3

20

Description

CAPI_GET_VERSION

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

[CAPI GET VERSION | OxF1|
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF1

Return Value

Return Comment

AH COMMON-ISDN-API major version: 2
AL COMMON-ISDN-API minor version: 0
DH Manufacturer-specific major number

DL Manufacturer-specific minor number

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.1.2.4. CAPI_GET_SERIAL_NUMBER

Description

With this function the application obtains the (optional) serial number of COMMON-
ISDN-API. The application provides a FAR pointer to a data area of 8 bytes in
registers ES:BX. The serial number, a seven-digit number coded as a zero-terminated
ASCII string, is present in this data area after the function has been executed. If no
serial number is supplied, the serial number is an empty string.

[CAPI GET SERIAL NUMBER | OxF2 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code OxF2
ES:BX FAR pointer to buffer

Return Value

Return Comment

ES:BX The (optional) serial number is a 7-digit number in plain text.
The end of the serial number is indicated by a zero byte. If no
serial number is to be used, a zero byte must be written at the
first position in the buffer.

Chapter 8.1: MS-DOS 21

8.1.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. Registers ES:BX must contain a FAR pointer to a data area of 64 bytes.
COMMON-ISDN-API copies information about implemented features, the number
of controllers and supported protocols to this buffer. Register CX contains the number
of the controller (bits 0..6) for which this information is requested. The profile
structure is described at the beginning of Chapter 8.

[CAPI GET PROFILE | OxF3|
Parameter Comment
AH Version number 20 (0x14)
AL Functional code 0xF3
CX Controller number (if 0, only number of controllers is re-
turned)
ES:BX FAR pointer to buffer

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
22 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.1.2.6 CAPI_MANUFACTURER

Description

This function is manufacturer-specific.

[CAPI MANUFACTURER

OXFF |

Parameter Comment

AH Version number 20 (0x14)
AL Function code OxFF
Manufacturer-specific

Return Value

Return

Comment

Manufacturer-specific

Chapter 8.1: MS-DOS

23

24

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.2 Windows 3.x (Application Level)

In a PC environment with the MS-DOS extension Windows, applications can access COMMON-ISDN-API
services via a DLL (Dynamic Link Library). The interface between applications and COMMON-ISDN-API is
realized as a function interface. Applications can issue COMMON-ISDN-API function calls to perform
COMMON-ISDN-API operations.

The DLL providing the function interface must be named "CAPI120.DLL". All functions exported by this library
must be called with a FAR call according to the PASCAL calling convention. This means that all parameters are
passed on the stack (the first parameter named is pushed first), and the called function must clear the stack before
it returns control to the caller.

The functions are exported under the following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI120.99

CAPI_REGISTER CAPI20.1
CAPI_RELEASE CAPI120.2
CAPI_PUT_MESSAGE CAPI20.3
CAPI_GET_MESSAGE CAPI20.4
CAPI_SET_SIGNAL CAPI20.5
CAPI_GET_MANUFACTURER CAPI20.6
CAPI_GET_VERSION CAPI20.7
CAPI_GET_SERIAL_NUMBER CAPI20.8
CAPI_GET_PROFILE CAPI20.9
CAPI_INSTALLED CAPI20.10

These functions can be called by an application as imported functions in accordance with the DLL conventions.
Whenever an application calls any function of the DLL for any purpose, it must ensure that there are at least 512
bytes available on the stack.

All pointers that are passed from the application program to COMMON-ISDN-API, or vice versa, in function
calls or in messages, are 16:16 segmented protected-mode pointers. This applies in particular to the data pointer
in DATA_B3_REQ and DATA_B3_IND messages.

In the Windows 3.x environment, the following data types are used in defining the functional interface:

WORD 16-bit unsigned integer

DWORD 32-bit unsigned integer

LPVOID 16:16 (segmented) protected-mode pointer to any memory location

LPVOID * 16:16 (segmented) protected-mode pointer to an LPVOID

LPBYTE 16:16 (segmented) protected-mode pointer to a character string

LPWORD 16:16 (segmented) protected-mode pointer to a 16-bit unsigned integer value

CAPIENTRY WORD FAR PASCAL (in accordance with the Windows DLL calling convention)

Chapter 8.2: Windows 25

8.2.1 Message Operations

8.2.1.1 CAPI_REGISTER

26

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections that the application can maintain concurrently. Any attempt by the
application to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol 1ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

CAPIENTRY CAPI_REGISTER (WORD MessageBufferSize,
WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDatalen,
LPWORD pApplID);

Parameter Comment
MessageBufferSize Size of message buffer
maxLogicalConnection Maximum number of logical connections

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

maxBDataBlocks

Number of data blocks available simultaneously

maxBDatalLen

Maximum size of a data block

pApplID

Pointer to the location where COMMON-ISDN-API is to place the as-
signed application identification number

Return Value

Return Value

Comment

0x0000

Registration successful: application identification number has been as-
sighed

All other values

Coded as described in parameter Info, class 0x10xx

Chapter 8.2: Windows

27

8.2.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from COMMON-ISDN-API. COM-
MON-ISDN-API releases all resources that have been allocated for the application.

The application is identified by the application identification number that was assigned
in the earlier CAPI_REGISTER operation.

Function call

[CAPIENTRY CAPI RELEASE (WORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function
CAP|_REGISTER

Return Value

Return Value Comment

0x0000 Release of the application successful

All other values Coded as described in parameter Info, class 0x11xx
28 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.2.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by its application identification number.

Function call

CAPIENTRY CAPI_PUT_MESSAGE(WORD ApplID,
LPVOID pCAPIMessage);

Parameter Comment

ApplID Application identification number assigned by the function
CAPI_REGISTER

pCAPIMessage 16:16 (segmented) protected-mode pointer to the message to be passed to
COMMON-ISDN-API

Return Value

Return Value Comment

0x0000 No error

All other values Coded as described in parameter Info, class 0x11xx
Note

When the function call returns control to the application, the message memory area
can be re-used.

Chapter 8.2: Windows 29

8.2.1.4 CAPI_GET_MESSAGE

30

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve messages intended for the specified application
identification number. If there is no message queued for retrieval, the function returns
immediately with an appropriate error code.

Function call

CAPIENTRY CAPI_GET_MESSAGE (WORD ApplID,
LPVOID *ppCAPIMessage);

Parameter Comment

ApplID Application identification number assigned by the function
CAPI_REGISTER

ppCAPIMessage 16:16 (segmented) protected-mode pointer to the memory location where
COMMON-ISDN-API should place the 16:16 (segmented) protected-
mode pointer to the message

Return Value

Return Value Comment
0x0000 Message was successfully retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The message received may be made invalid by the next CAPI_GET_MESSAGE call
for the same application identification number. This is especially important to note in
multi-threaded applications where more than one thread may execute
CAPI_GET_MESSAGE operations. Synchronization between threads must be done
by the application.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.2.2 Other Functions

8.2.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application to install a mechanism by which
COMMON-ISDN-API signals the availability of a message or the clearing of an
internal busy or queue-full condition. All restrictions pertaining to an interrupt context
apply to the call-back function.

Function call

CAPIENTRY CAPI_SET _SIGNAL (WORD ApplID,

VOID (FAR PASCAL *CAPI_Callback) (WORD
ApplID, DWORD Param),
DWORD Param

);
Parameter Comment
ApplID Application identification number assigned by the function
CAPI_REGISTER
CAPI_Callback Address of the call-back function. The function is called in an interrupt
context (see note). The value 0x00000000 disables the call-back function.
Param Additional parameter of call-back function

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class 0x11xx

Note

Call-back notification takes place after:

« any message is queued in the application's message queue,
« anannounced busy condition is cleared, or
« anannounced queue-full condition is cleared.

Chapter 8.2: Windows 31

32

In the case of local confirmations (such as LISTEN_CONF), the call-back notification
may occur before the operation CAPI_PUT_MESSAGE returns control to the
application.

The call-back function is called using the following conventions:

VOID FAR PASCAL CAPI_Callback (
WORD ApplID,
DWORD Param

)i

The data segment register DS is undefined (MakeProclInstance() or _setds may be
used). A stack of at least 512 bytes is set up by COMMON-ISDN-API.

The call-back function may be called in an interrupt context (i.e., all data and code ac-
cessed by the call-back function must be kept from being paged out by Windows’
VMM, e.g. by using fixed segments in its own DLL and/or by applying Global-
PageLock() to selectors used).

PostMessage() and PostAppMessage() are the only Windows API functions which
may be called.

CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE and CAPI_SET_SIGNAL are the
only COMMON-ISDN-API functions which can be called.

The call-back function is not re-entered by COMMON-ISDN-API. Instead, it is
called again after returning if a new event has occurred during processing.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.2.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API (DLL)
manufacturer identification. The application furnishes a 16:16 (segmented) protected-
mode pointer to a buffer of 64 bytes in szBuffer. COMMON-ISDN-API copies the

identification, coded as a zero-terminated ASCII string, to this buffer.

Function call

[CAPIENTRY CAPI GET MANUFACTURER (LPBYTE szBuffer);

Parameter

Comment

szBuffer

16:16 (segmented) protected-mode pointer to a buffer of 64 bytes

Return Value

Return Value

Comment

0x0000

No error

Chapter 8.2: Windows

33

8.2.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API as
well as an internal revision number.

Function call

CAPIENTRY CAPI_GET_VERSION (LPWORD pCAPIMajor,
LPWORD pCAPIMinor,
LPWORD pManufacturerMajor,
LPWORD pManufacturerMinor);

Parameter Comment

pCAPIMajor 16:16 (segmented) protected-mode pointer to a WORD which receives the
COMMON-ISDN-API major version number: 2

pCAPIMinor 16:16 (segmented) protected-mode pointer to a WORD which receives the
COMMON-ISDN-API minor version number: 0

pManufacturerMajor 16:16 (segmented) protected-mode pointer to a WORD which receives the
manufacturer-specific major number

pManufacturerMinor 16:16 (segmented) protected-mode pointer to a WORD which receives the
manufacturer-specific minor number

Return Value

Return Comment
0x0000 No error, version numbers have been copied
34 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.2.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a 16:16 (segmented) protected-mode
pointer to a string buffer of 8 bytes in szBuffer. COMMON-ISDN-API copies the
serial number string to this buffer. The serial number, a seven-digit number coded as a

zero-terminated ASCII string, is present in this buffer after the function has returned.

Function call

[CAPIENTRY CAPI GET SERIAL NUMBER (LPBYTE szBuffer);

Parameter

Comment

szBuffer

16:16 (segmented) protected-mode pointer to a buffer of 8 bytes

Return Value

Return

Comment

0x0000

No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

Chapter 8.2: Windows

35

8.2.2.5 CAPI_GET_PROFILE

36

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a 16:16 (segmented) protected-mode pointer to a buffer
of 64 bytes in szBuffer. COMMON-ISDN-API copies information about
implemented features, the number of controllers and supported protocols to this buffer.
CtrINr contains the number of the controller (bits 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

CAPIENTRY CAPI_GET_PROFILE (LPBYTE szBuffer,

WORD CtrINr
)i
Parameter Comment
szBuffer 16:16 (segmented) protected-mode pointer to a buffer of 64 bytes
CtrINr Number of Controller. If 0, only the number of controllers installed is
provided to the application.

Return Value

Return Comment
0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.2.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine whether the ISDN hardware
and necessary drivers are installed.

Function call

[CAPIENTRY CAPI INSTALLED (void)

Return Value

Return

Comment

0x0000

COMMON-ISDN-API is installed

any other value

Coded as described in parameter Info, class 0x10xx

Chapter 8.2: Windows

37

38

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.3 0OS/2 (Application Level)

In a PC environment with the operating system OS/2 Version 2.x, application programs can access COMMON-
ISDN-API services via a DLL (Dynamic Link Library). The interface between applications and COMMON-
ISDN-API is realized as a function interface. Applications issue COMMON-ISDN-API function calls to
perform COMMON-ISDN-API operations.

The DLL providing the function interface must be named "CAPI20.DLL". It is a 32-bit DLL which exports 32-
bit functions in accordance with the System Call Convention. This means that all parameters are passed on the
stack, and the calling process must clear the stack after control returns from the function call.

The functions are exported under the following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) ~ CAPI20.99

CAPI_REGISTER CAPI20.1
CAPI_RELEASE CAPI120.2
CAPI_PUT_MESSAGE CAPI120.3
CAPI_GET_MESSAGE CAPI20.4
CAPI_SET_SIGNAL CAPI20.5
CAPI_GET_MANUFACTURER CAPI120.6
CAPI_GET_VERSION CAPI20.7
CAPI_GET_SERIAL_NUMBER CAPI20.8
CAPI_GET_PROFILE CAPI20.9
CAPI_INSTALLED CAPI20.10

Applications may call these functions as imported functions in accordance with the DLL conventions. When an
application calls the DLL, it must ensure that there are at least 512 bytes available on the stack.

All pointers that are passed from the application program to COMMON-ISDN-API, or vice versa, in function
calls or in messages, are 0:32 flat pointers. This applies in particular to the data pointer in DATA_B3_REQ and
DATA_B3_IND messages. The referenced data shall not cross a 64 kbyte boundary in the flat address space,
because the DLL may convert the flat pointer it receives into a 16:16-bit segmented pointer.

In the OS/2 environment, the following data types are used in defining the functional interface:

word 16-bit unsigned integer

dword 32-bit unsigned integer

void* 0:32 flat pointer to any memory location

void** 0:32 flat pointer to a void *

char* 0:32 flat pointer to a character string

dword* 0:32 flat pointer to a 32-bit unsigned integer value

Chapter 8.3: OS/2 (Application Level) 39

8.3.1 Message Operations

8.3.1.1 CAPI_REGISTER

40

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDataLen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol 1ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

dword FAR PASCAL CAPI_REGISTER (dword MessageBufferSize,
dword maxLogicalConnection,
dword maxBDataBlocks,
dword maxBDatalen,
dword* pApplID);

Parameter Comment
MessageBufferSize Size of message buffer
maxLogicalConnection Maximum number of logical connections

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

maxBDataBlocks

Number of data blocks available simultaneously

maxBDatalLen

Maximum size of a data block

pApplID

Pointer to the location where COMMON-ISDN-API is to place the as-
signed application identification number

Return Value

Return Value
0x0000

All other values

Comment

Registration successful: application identification number has been as-
signed

Coded as described in parameter Info, class 0x10xx

Chapter 8.3: OS/2 (Application Level)

41

8.3.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. COM-
MON-ISDN-API releases all resources that have been allocated for the application.

The application is identified by the application identification number that was assigned
in the earlier CAPI_REGISTER operation.

Function call

[dword FAR PASCAL CAPI RELEASE (dword ApplID);

Parameter Comment
ApplID Application identification assigned by the function CAPI_REGISTER

Return Value

Return Value Comment

0x0000 Application successfully released

All other values Coded as described in parameter Info, class 0x11xx
42 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.3.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by its application identification number. The message
memory area must not cross a 64 kbyte boundary in the flat address space (tiled

memory may be used, for example), because the DLL may convert the flat pointer it

receives from the application to a 16:16-bit segmented pointer. The same applies to the
B3 data blocks passed as pointers in DATA B3 REQ messages.

Function call

dword FAR PASCAL CAPI_PUT_MESSAGE (dword ApplID,

void* pCAPIMessage);

Parameter

Comment

ApplID

Application identification number assigned by the function
CAPI_REGISTER

pCAPIMessage

0:32 (flat) pointer to the message being passed to COMMON-ISDN-API

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class 0x11xx

Note

When the function call returns control to the application, the message memory area

can be re-used.

Chapter 8.3: OS/2 (Application Level)

43

8.3.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve those messages intended for the specified application
identification number. If there is no message queued for retrieval, the function returns
immediately with an error code.

Function call

dword FAR PASCAL CAPI_GET_MESSAGE (dword ApplID,
void** ppCAPIMessage);

Parameter Comment

ApplID Application identification number assigned by the function
CAPI_REGISTER

ppCAPIMessage 0:32 (flat) pointer to the memory location where COMMON-ISDN-API is
to place the 0:32 (flat) pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful: message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message may be made invalid by the next CAPI_GET_MESSAGE
operation for the same application identification number. This is particularly important
in multi-threaded applications where more than one thread may execute
CAPI_GET_MESSAGE operations. Synchronization between threads must be
performed by the application.

44 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.3.2 Other Functions

8.3.2.1 CAPI_SET_SIGNAL

Description

This operation is used by the application to install a mechanism by which
COMMON-ISDN-API signals the availability of a message to the application.

In OS/2 2.x this is best done using a fast 32-bit system event semaphore. The applica-
tion must create the semaphore to be used by calling the DosCreateEventSem()
function, which is part of the OS/2 system application program interface. This routine
provides a semaphore handle which is passed as a parameter in the
CAPI_SET_SIGNAL call.

When the signal is set, the specified semaphore is "posted” each time COMMON-
ISDN-API places a message in the application's message queue, thus incrementing a
post-count value associated with the semaphore. COMMON-ISDN-API posts the
semaphore by calling the DosPostEventSem() function of the OS/2 system API.

The application thread may wait until the semaphore’s post-count is greater than zero
using the OS/2 system call DosWalitEventSem(). It can also determine the current post
count and simultaneously reset the post counter by executing the OS/2 system API call
DosResetEventSem().

The signaling mechanism is deactivated by calling the CAPI_SET_SIGNAL function
with a semaphore handle of 0.

Function call

dword FAR PASCAL CAPI_SET_SIGNAL (dword ApplID,
dword hEventSem);

Parameter Comment

ApplID Application identification number assigned by the function
CAPI_REGISTER

hEventSem Event Semaphore handle allocated by operating system

Chapter 8.3: OS/2 (Application Level) 45

46

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class 0x11xx

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.3.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API (DLL)
manufacturer identification. The application provides a 0:32 (flat) pointer to a buffer
of 64 bytes in szBuffer. COMMON-ISDN-API copies the identification, coded as a
zero-terminated ASCII string, to this buffer.

Function call

[void FAR PASCAL CAPI GET MANUFACTURER (char* szBuffer);

Parameter Comment
szBuffer 0:32 (flat) pointer to a buffer of 64 bytes

Chapter 8.3: OS/2 (Application Level) 47

8.3.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

Function call

dword FAR PASCAL CAPI_GET_VERSION (dword* pCAPIMajor,
dword* pCAPIMinor,
dword* pManufacturerMajor,
dword* pManufacturerMinor);

Parameter Comment

pCAPIMajor 0:32 (flat) protected-mode pointer to a dword which receives the
COMMON-ISDN-API major version number: 2

pCAPIMinor 0:32 (flat) protected-mode pointer to a dword which receives the
COMMON-ISDN-API minor version number: 0

pManufacturerMajor 0:32 (flat) protected-mode pointer to a dword which receives the
manufacturer-specific major number

pManufacturerMinor 0:32 (flat) protected-mode pointer to a dword which receives the
manufacturer-specific minor number

Return Value

Return Comment
0x0000 No error, version numbers have been copied.
48 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.3.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a 0:32 (flat) protected-mode pointer to a
string buffer of 8 bytes in szBuffer. COMMON-ISDN-API copies the serial number
string to this buffer. The serial number, a seven-digit number coded as a zero-
terminated ASCII string, is present in this buffer after the function has returned.

Function call

[dword FAR PASCAL CAPI GET SERIAL NUMBER (char* szBuffer);

Parameter Comment
szBuffer 0:32 (flat) pointer to a buffer of 8 bytes

Return Value

Return Comment

0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

Chapter 8.3: OS/2 (Application Level) 49

8.3.2.5 CAPI_GET_PROFILE

50

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a 0:32 (flat) protected-mode pointer to a buffer of 64
bytes in szBuffer. COMMON-ISDN-API copies information about implemented
features, the number of controllers and supported protocols to this buffer. CtrINr
contains the number of the controller (bits 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

dword FAR PASCAL CAPI_GET_PROFILE (LPBYTE szBuffer,

WORD CtrINr
);
Parameter Comment
szBuffer 0:32 (flat) protected-mode pointer to a buffer of 64 bytes
CtrINr Number of Controller. If 0, only number of controllers installed is provided
to the application.
Return Value
Return Comment
0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.3.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine whether the ISDN hardware
and necessary drivers are installed.

Function call

[dword FAR PASCAL CAPI INSTALLED (void)

Return Value

Return

Comment

0x0000

COMMON-ISDN-API is installed

Any other value

Coded as described in parameter Info, class 0x11xx

Chapter 8.3: OS/2 (Application Level)

51

52

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.4 (0OS/2 (Device Driver Level)

In a PC environment with the operating system OS/2 Version 2.x, COMMON-ISDN-API applications may
exist in the form of OS/2 physical device drivers (PDD). Such applications are referred to in the following
sections as "application PDDs". This specification describes the interface of an OS/2 2.x physical device driver
providing COMMON-ISDN-API services to other device drivers. This COMMON-ISDN-API PDD is called
"CAPI PDD" in the following sections.

Physical Device Drivers under OS/2 2.x are 16:16 segment modules. All functions in this specification are thus
16-bit functions, and all pointers are 16:16 segmented.

In this chapter, the following data types are used in defining the interface:

word 16-bit unsigned integer

dword 32-bit unsigned integer

void* 16:16 (segmented) pointer to any memory location
void** 16:16 (segmented) pointer to a void*

char* 16:16 (segmented) pointer to a character string
word* 16:16 (segmented) pointer to a word

The CAPI PDD offers its services to application PDDs via the Inter-Device Driver Interface. An application
PDD issues an inter-device driver call (IDC) to execute CAPI operations.

The CAPI PDD name which is contained in its device driver header must be "CAPI20 " (with trailing spaces to
extended the name to 8 characters). The CAPI PDD header must contain the offset to its inter-device driver call
entry point. The IDC bit of the Device Attribute Field in the device driver header must be set to 1.

Manufacturers who also wish to support COMMON-ISDN-API in 0S/2’s DOS/Windows environment must
also provide the DOS/Windows 3.x interface of COMMON-ISDN-API in accordance with Subclauses 8.1/8.2.
In this case, the PDD’s name causes conflicts for Windows 3.x applications in accessing the COMMON-ISDN-
API DLL named CAPI20.DLL. To resolve this conflict, the following new mechanism was introduced in 1996
(with the Second Edition of COMMON-ISDN-API Version 2.0):

The CAPI PDD name which is contained in its device driver may be “CAPI20$ ” or “CAPI20 ” (both space-
extended to 8 characters). The preferred method is to use “CAPI20$ ”, but in order to achieve compatibility with
existing PDD-applications it shall be possible to install the COMMON-ISDN-API PDD with the device name
“CAPI20 ™. In this case, the DOS/Windows 3.x interface may be disabled. PDD applications should first try to
access the “CAPI20$ ” device.

An application PDD gains access to the CAPI PDD by issuing an AttachDD device help call. This call returns
the protected-mode IDC entry point, as a 16:16 segmented pointer, and the data segment of the CAPI PDD. Be-
fore calling the IDC entry point of the CAPI PDD, the application PDD must set the data segment register DS
appropriately.

This is the prototype of the CAPI1 PDD IDC function:

word CAPI120_IDC (word funcCode, void *funcPara);

The function is called with the C calling convention: thus the calling application PDD must clear the stack after
the function returns control. There must be at least 512 bytes available on the stack when the application PDD
calls the IDC function. The parameter funcCode selects the CAPI operation to be performed; the parameter
funcPara contains a 16:16 segmented pointer to the CAPI operation-specific parameters. The structure of these

Chapter 8.4: OS/2 (Device Driver Level) 53

parameters is defined in the following sections. The function returns an error code, which is 0 if no error
occurred.

54 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.4.1 Message Operations

8.4.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. In doing so, the application provides COMMON-ISDN-API with a
memory area. A pointer to this memory area is transferred in parameter Buffer. The
application describes its needs by passing the four parameters MessageBufferSize,
maxLogicalConnection, maxBDataBlocks and maxBDatalen.

COMMON-ISDN-API uses the memory area referenced by parameter Buffer to store
messages and data blocks sent to the application PDD. The passed memory must be
either fixed or locked. COMMON-ISDN-API need not verify whether this storage
really exists. The size of the memory area is calculated by the following formula:

MessageBufferSize + (maxLogicalConnection * maxBDataBlocks * maxBDatal en)

For a typical application PDD, the amount of memory required should be calculated
by the following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol 1ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Chapter 8.4: OS/2 (Device Driver Level) 55

56

[CAPI REGISTER

0x01 |

Structure of command-specific parameters:

Parameter Type Comment

Buffer void* 16:16 (segmented) pointer to a memory region provided by
the application PDD. COMMON-ISDN-API uses this
memory area to store messages and data blocks sent for the
application PDD.

MessageBufferSize word Size of message buffer

maxLogicalConnection word Maximum number of logical connections

maxBDataBlocks word Number of data blocks available simultaneously

maxBDatalLen word Maximum size of a data block

pApplID word* 16:16 (segmented) pointer to the location where COMMON-
ISDN-API is to place the assigned application identification
number

Return Value
Return Value Comment

0x0000

Registration successful: application identification number was assigned

All other values

Coded as described in parameter Info, class 0x10xx

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.4.1.2 CAPI_RELEASE

Description

The application PDD uses this operation to log out from COMMON-ISDN-API.

COMMON-ISDN-API
application PDD.

releases all resources that have been allocated for the

The application PDD is identified by the application identification number that was as-
signed in the earlier CAPI_REGISTER operation.

[CAPI RELEASE

0x02 |

Structure of command-specific parameters:

Parameter Type Comment
ApplID word Application identification number assigned by the function
CAP|_REGISTER
Return Value
Return Value Comment

0x0000

Release of the application successful

All other values

Coded as described in parameter Ox11xx

Chapter 8.4: OS/2 (Device Driver Level)

57

8.4.1.3 CAPI_PUT_MESSAGE

58

Description

With this operation the application PDD transfers a message to COMMON-ISDN-
API. The application identifies itself by its application identification number. The
pointer passed to COMMON-ISDN-API is a 16:16 segmented pointer. The pointer in
a DATA B3 _REQ message is also 16:16 segmented. The memory area of the
message and the data block must be either fixed or locked.

[CAPI PUT MESSAGE 0x03)

Structure of command-specific parameters:

Parameter Type Comment

ApplID word Application identification number assigned by the function
CAPI_REGISTER

pCAPIMessage void* 16:16 segmented pointer to the message being passed to
COMMON-ISDN-API

Return Value

Return Value Comment

0x0000 No error

All other values Coded as described in parameter 0x11xx
Note

When the function call returns control to the application PDD, the message memory
area can be re-used.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.4.1.4 CAPI_GET_MESSAGE

Description

With this operation the application PDD retrieves a message from COMMON-ISDN-
API. The application PDD can only retrieve those messages intended for the specified
application identification number. If there is no message queued for retrieval, the func-
tion returns immediately with an error.

[CAPI GET MESSAGE 0x04 |

Structure of command-specific parameters:

Parameter Type Comment

ApplID word Application identification number assigned by the function
CAPI_REGISTER

ppCAPIMessage void** 16:16 segmented pointer to the memory location where
COMMON-ISDN-API is to place the 16:16 segmented
pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful: message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message may be made invalid by the next CAPI_GET_MESSAGE
operation for the same application identification number.

Chapter 8.4: OS/2 (Device Driver Level) 59

8.4.2 Other Functions

8421 CAPI_SET_SIGNAL

Description

This operation is used by the application PDD to install a mechanism by which
COMMON-ISDN-API signals the availability of a message.

A call-back mechanism is used between COMMON-ISDN-API and the application
PDD. By calling the IDC function with the CAPI_SET_SIGNAL function code, the
application PDD passes to COMMON-ISDN-API a 16:16 (segmented) pointer to a
call-back function.

[CAPI SET SIGNAL 0x05 |

Structure of command-specific parameters:

Parameter Type Comment

ApplID word Application identification number assigned by the function
CAPI_REGISTER

sigFunc void* 16:16 segmented pointer to the call-back function

Return Value

Return Value Comment

0x0000 No error

All other values Coded as described in parameter Info, class 0x11xx
Note

The call-back function is called by COMMON-ISDN-API after:

« any message is queued in the application's message queue,
« an announced busy condition is cleared, or
« an announced queue-full condition is cleared.

60 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Interrupts are disabled. The call-back function must be terminated by RETF. All regis-
ters must be preserved. A stack of at least 32 bytes is provided by COMMON-ISDN-
API.

The call-back function is called with interrupts disabled. COMMON-ISDN-API shall
not call this function recursively, even if the call-back function enables interrupts. In-
stead, the call-back function shall be called again after returning control to
COMMON-ISDN-API.

The call-back function is allowed to use the COMMON-ISDN-API operations
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE, and CAPI_SET_SIGNAL. If it
does so, it must take into account the fact that interrupts may be enabled by COM-
MON-ISDN-API.

In case of local confirmations (such as LISTEN_CONF), the call-back function may
be called before the operation CAPI_PUT_MESSAGE returns control to the
application.

Chapter 8.4: OS/2 (Device Driver Level) 61

8.4.2.2

62

Description

CAPI_GET_MANUFACTURER

With this operation the application obtains the COMMON-ISDN-API (DLL)
manufacturer identification. The application provides a 16:16 (segmented) protected-
mode pointer to a buffer of 64 bytes in szBuffer. COMMON-ISDN-API copies the
identification, coded as a zero-terminated ASCII string, to this buffer.

Function call

[CAPI GET MANUFACTURER

0x06 |

Structure of command-specific parameters:

Parameter Type Comment

szBuffer char* 16:16 (segmented) pointer to a buffer of 64 bytes
Return Value

Return Comment

0x0000 No error

All other values

Coded as described in parameter Info, class 0x11xx

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.4.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API as
well as an internal revision number.

Function call

[CAPI GET VERSION

0x07 |

Structure of command-specific parameters:

Parameter Type Comment

pCAPIMajor word* 16:16 (segmented) protected-mode pointer to a word which
receives the COMMON-ISDN-API major version number: 2

pCAPIMinor word* 16:16 (segmented) protected-mode pointer to a word which
receives the COMMON-ISDN-API minor version number:
0

pManufacturerMajor word* 16:16 (segmented) protected-mode pointer to a word which
receives the manufacturer-specific major number

pManufacturerMinor word* 16:16 (segmented) protected-mode pointer to a word which
receives the manufacturer-specific minor number

Return Value
Return Comment
0x0000 No error, version numbers have been copied

All other values

Coded as described in parameter Info, class 0x11xx

Chapter 8.4: OS/2 (Device Driver Level)

63

8.4.2.4 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a 16:16 (segmented) protected-mode
pointer to a string buffer of 8 bytes in szBuffer. COMMON-ISDN-API copies the
serial number string to this buffer. The serial number, a seven-digit number coded as a
zero-terminated ASCII string, is present in this buffer after the function has returned.

Function call

[CAPI GET SERIAL NUMBER 0x08 |

Structure of command-specific parameters:

Parameter Type Comment

szBuffer char* 16:16 (segmented) pointer to a buffer of 8 bytes
Return Value

Return Comment

0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

All other values

Coded as described in parameter Info, class 0x11xx

64

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.4.2.5 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a 16:16 (segmented) protected-mode pointer to a buffer
of 64 bytes in szBuffer. COMMON-ISDN-API copies information about
implemented features, the number of controllers and supported protocols to this buffer.
CtrINr contains the number of the controller (bits 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

[CAPI GET PROFILE 0x09 |

Structure of command-specific parameters:

Parameter Type Comment

szBuffer void* 16:16 (segmented) protected-mode pointer to a buffer of 64
bytes

CtrINr word Number of Controller. If 0, only number of controllers
installed is provided to the application.

Return Value

Return Comment
0x0000 No error
All other values Coded as described in parameter Info, class 0x11xx

Chapter 8.4: OS/2 (Device Driver Level) 65

66

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.5 UNIX

COMMON-ISDN-API is incorporated in the UNIX environment as a kernel driver using streams facilities.
Communication between such kernel drivers and applications is typically based on the system calls open, ioctl,
putmsg, getmsg, and close. To register with a device driver, an application opens a stream (open()).
Applications log off from COMMON-ISDN-API using the system call close(). Data transfer to and from the
driver is accomplished by the calls putmsg() and getmsg(). Additional information is exchanged using the ioctl()
system call.

COMMON-ISDN-API uses this standardized driver access mechanism. For this reason, the following
specification does not define a complete functional interface (which would not be accepted by UNIX
applications, which always are—and must be—file-1/O oriented). Instead, the COMMON-ISDN-API system
call level interface is introduced, which any UNIX-like application can use to exchange COMMON-ISDN-API
messages and related data. Of course it is possible to provide a functional interface (as described in Chapter 8.2,
for example), but that would not be the appropriate application interface solution for communications
applications running on UNIX. The following specification nonetheless provides the complete capabilities of the
COMMON-ISDN-API access operations used in other operating systems.

COMMON-ISDN-API's device name is /dev/capi20. To allow multiple access by different UNIX processes,
the device is realized as a clone streams device.

An application (in COMMON-ISDN-API terms) can register with COMMON-ISDN-API (CAPI_REGISTER)
by opening the device /dev/capi20 and issuing the relevant parameters to the opened device by means of the
system call ioctl(). Note that the result of this operation is a file handle, not an application ID. Thus in the UNIX
environment, the application ID contained in COMMON-ISDN-API messages is not used to identify CAPI
applications. The only handle valid between the COMMON-ISDN-API kernel driver and the application, based
on a system call level interface, is a UNIX file handle. To release itself from COMMON-ISDN-API
(CAPI_RELEASE), an application must simply close the opened device. The COMMON-ISDN-API operations
CAPI_PUT_MESSAGE and CAPI_GET_MESSAGE are performed by means of the system calls putmsg() and
getmsg(). COMMON-ISDN-API need not provide a CAPI_SET_SIGNAL function: instead, applications may
use the UNIX signaling and/or waiting mechanism based on file descriptors. This includes waiting on multiple
file descriptors (poll()); a capability which is not offered by COMMON-ISDN-API in other operating systems.
All other COMMON-ISDN-API operations are realized by means of the system call ioctl() with appropriate
parameters.

All messages are passed transparently through the UNIX driver interface.

The following data types are used in defining the system call level interface in the UNIX environment:

ushort 16-bit unsigned integer
unsigned 32-bit unsigned integer

Chapter 8.5: UNIX 67

8.5.1 Message Operations

8.5.1.1 CAPI_REGISTER

68

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the three parameters
maxLogicalConnection, maxBDataBlocks and maxBDatalen.

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol 1ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

[CAPI REGISTER ioctl(): 0x01 |

Implementation

The following code fragment illustrates the UNIX implementation of the COMMON-
ISDN-API register function:

#include <sys/fcntl.h> [* open() parameters */
#include <sys/stropts.h> [* streams ioctl() constants */
#include <sys/socket.h> [* streams ioctl() macros */

struct capi_register_params {

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

unsigned maxLogicalConnection;
unsigned maxBDataBlocks;
unsigned maxBDatalen;

}p;

int fd;

struct strioctl strioctl;

/* open device */
fd = open("/dev/capi20”, O_RDWR, 0);

/* set registration parameters */

rp.maxLogicalConnection = No. of simultaneous user data connections
rp.maxBDataBlocks = No. of buffered data messages
rp.maxBDatal en = Size of buffered data messages

/* perform CAPI_REGISTER */

strioctl.ic_cmd = ('C'<<8) | 0x01; /* CAPI_REGISTER */
strioctl.ic_timout = 0;

strioctl.ic_dp = (void *)(&rp);

strioctl.ic_len = sizeof(struct capi_register_params);

ioctl(fd, I_STR, &strioctl);

For the sake of simplicity, no error checking is shown in the example.

Chapter 8.5: UNIX

69

8.5.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. This
signals to COMMON-ISDN-API that all resources allocated by COMMON-ISDN-
API for the application can be released.

B close
CAPI RELEASE |

Implementation

To release a connection between an application and COMMON-ISDN-API driver,
the system call close() is used. All related resources are released.

70 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.5.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by its application identification number.

[CAPI_ PUT MESSAGE putmsg() |

Implementation

The system call putmsg() is used to transfer a message from an application to the
COMMON-ISDN-API driver and the underlying controller.

The application places the COMMON-ISDN-API message in the ctl part of the
putmsg() call. The parameters data and data length of the DATA B3 REQ message
must be stored in the data part of putmsg().

Note

The COMMON-ISDN-API message is stored in the ctl part of putmsg(). For the
message DATA_B3_REQ, the parameters data and data length in the ctl part of
putmsg() are not interpreted by COMMON-ISDN-API implementations.

Chapter 8.5: UNIX 71

8.5.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application retrieves each message associated with the specified file descriptor,
which is obtained through the operation CAPI_REGISTER.

[CAPI GET MESSAGE getmsg() |

Implementation

To receive a message from COMMON-ISDN-API, the application uses the system
call getmsg().

The application must supply sufficient buffers to receive the ctl and data parts of the
message. When receiving the COMMON-ISDN-API message DATA_B3_IND, the
message parameters data and data length are not supported. Instead, the data part of
getmsg() is used to pass the data.

72 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.5.2 Other Functions

8521 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API manufacturer
identification. The application provides a buffer which must have a size of at least 64
bytes. COMMON-ISDN-API copies the identification string, coded as a zero
terminated ASCII string, to this buffer.

[CAPI GET MANUFACTURER ioctl(): 0x06 |

Implementation

This operation is realized using ioctl(0x06). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[64];

strioctl.ic_cmd = ('C' << 8) | 0x06; /* CAPI_GET_MANUFACTURER */
strioctl.ic_timout = 0;

strioctl.ic_dp = buffer;

strioctl.ic_len = sizeof(buffer);

ioctl(fd, I_STR, &strioctl);

The manufacturer identification is transferred to the specified buffer. The string is
always zero-terminated.

Chapter 8.5: UNIX 73

8.5.2.2 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number. The application must provide a buffer with a size
of 4 * sizeof(unsigned).

[CAPI GET VERSION ioctl(): 0x07 |

Implementation

This operation is realized using ioctl(0x07). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
unsigned buffer[4];

strioctl.ic_cmd = ('C'<< 8) | 0x07; /* CAPI_GET_VERSION */
strioctl.ic_timout = 0;

strioctl.ic_dp = buffer;

strioctl.ic_len = sizeof(buffer);

ioctl(fd, |_STR, &strioctl);

On return, the buffer contains four elements:

first COMMON-ISDN-API major version: 0x02
second COMMON-ISDN-API minor version: 0x00
third Manufacturer-specific major number
fourth Manufacturer-specific minor number

74 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.5.2.3 CAPI_GET_SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The application provides a buffer which must have a size of 8
bytes. COMMON-ISDN-API copies the serial number string to this buffer. The serial
number, a seven-digit number coded as a zero-terminated ASCII string, is present in
this buffer after the function has returned.

[CAPI GET SERIAL NUMBER ioctl(): 0x08]

Implementation

This operation is realized using ioctl(0x08). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[8];

strioctl.ic_cmd = ('C' << 8) | 0x08; /* CAPI_GET_SERIAL_NUMBER */
strioctl.ic_timout = 0;

strioctl.ic_dp = buffer;

strioctl.ic_len = sizeof(buffer);

ioctl(fd, |_STR, &strioctl);

The serial number consists of up to seven decimal digit ASCII characters. It is always
zero-terminated.

Chapter 8.5: UNIX 75

8.5.2.4 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The application provides a buffer of 64 bytes. COMMON-ISDN-API copies
information about implemented features, the number of controllers and supported
protocols to this buffer. CtrINr, which is an input parameter for COMMON-ISDN-
API, is coded in the first byte of the buffer and contains the number of the controller
(bits 0..6) for which this information is requested. The profile structure retrieved is
described at the beginning of Chapter 8.

[CAPI GET PROFILE 0x09 |

Implementation

This operation is realized using ioctl(0x09). The caller must supply a buffer in struct
strioctl ic_dp and ic_len.

int fd; /* a valid COMMON-ISDN-API handle */
struct strioctl strioctl;
char buffer[64];

/* Set Controller number */
((unsigned™)(&buffer[0])) = CtrINTr;

strioctl.ic_cmd = ('C'<< 8) | 0x09; /* CAPI_GET_PROFILE */
strioctl.ic_timout = 0;

strioctl.ic_dp = buffer;

strioctl.ic_len = sizeof(buffer);

ioctl(fd, I_STR, &strioctl);

Structure of command-specific parameters:

Parameter Comment
CtrINr Number of Controller. If 0, only the number of controllers
installed is provided to the application.

76 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.6 NetWare

The NetWare server operating system provides an open, non-preemptive multitasking platform including file,
print, communications and other services. A typical NetWare server can support tens to hundreds of
simultaneous users. Extensibility of communication services in particular is accommodated through open service
interfaces allowing integration of third party hardware and software. Scalability and flexibility are therefore
considered primary design goals when considering the addition of a new communications subsystem to the
NetWare operating system.

This implementation of COMMON-ISDN-API in the NetWare server operating system addresses both
scalability and flexibility by allowing concurrent operation of multiple CAPI-compliant applications and
multiple ISDN controllers supplied by different manufacturers. The COMMON-ISDN-API service provider in
the NetWare operating system environment is a subset of the overall NetWare CAPI Manager subsystem. The
NetWare CAPI Manager includes all standard functions defined by COMMON-ISDN-API v2.0 as well as
auxiliary functions providing enhanced ISDN resource management for NetWare systems running multiple
concurrent CAPI applications. The NetWare CAPI Manager subsystem also includes a secondary service
interface which integrates each manufacturer-specific ISDN controller driver below COMMON-ISDN-API.
Although the driver interface maintains the general structure and syntax of CAPI functions and messages, it is
not part of the COMMON-ISDN-API v2.0 definition, but unique to the NetWare CAPI Manager
implementation.

The following description of COMMON-ISDN-API within the NetWare server operating system provides a
detailed description of all the standard COMMON-ISDN-API functions which make up the application
programming interface, containing sufficient information to implement CAPI-compliant applications within the
NetWare environment. A general overview of the NetWare CAPI Manager is also provided to identify which
services are standard COMMON-ISDN-API and which are unique to the NetWare CAPI Manager subsystem.
Detailed description of the functions unique to the NetWare CAPI Manager for enhanced resource management
and ISDN controller software integration is beyond the scope of this document. The complete definition is
contained in the Novell specification NetWare CAPI Manager and CAPI Driver Specification (Version 2.0).

Architectural Overview

The NetWare CAPI Manager, which is implemented as a NetWare Loadable Module (NLM), acts as a service
multiplexer and common interface point between CAPI-compliant applications and each manufacturer-specific
ISDN controller driver situated below COMMON-ISDN-API. Each CAPI application and each controller driver
is implemented as a separate NLM which registers independently with the NetWare CAPI Manager at
initialization time. COMMON-ISDN-API exists between the CAPI applications and the NetWare CAPI
Manager. NetWare CAPI Manager auxiliary management functions also exist at this point. A Novell-defined
service interface exists between the NetWare CAPI Manager and the ISDN controller drivers; however,
applications have no knowledge of this lower-level interface. From the application perspective, the lower-level
driver interface is an internal detail of the NetWare CAPI Manager implementation of COMMON-ISDN-API.

Figure 1 illustrates the relationship between CAPI applications, the NetWare CAPI Manager, and manufacturer-
specific controller drivers and controller hardware.

Chapter 8.6: NetWare 7

CAPI-Application CAPI-Application CAPI-Application

NetWare CAPI-Manager

Controller Driver Controller Driver Controller Driver

Controller Controller Controller

]]]

NetWare 3.x/4.x Server

Figure 1: Architectural Overview

Services provided by the CAPI Manager are presented as a set of exported public symbols. To avoid public
symbol conflicts within the server environment, the services provided by each controller driver are presented to
the NetWare CAPI Manager at driver registration time as a set of entry point addresses. CAPI Manager services
include the standard COMMON-ISDN-API function set, auxiliary functions supporting driver registration and
de-registration of controller services, and auxiliary management functions referenced by CAPI applications.

The additional management functions implement a powerful search mechanism for locating specific controller
resources and a locking mechanism to reserve controller resources for exclusive use by an application. The
CAPI_GetFirstCntlrinfo searches for the first occurrence of a controller whose capabilities match search criteria
specified by the application. The search criteria can include a symbolic controller name, specific protocols,
required bandwidth etc. The CAPI_GetNextCntlrinfo function searches for additional controllers which meet the
previously specified search criteria. The CAPI_LockResource function is provided for applications which must
have guaranteed access to a previously identified controller channel or protocol resources. The specified resource
remains reserved until the application calls the CAPI_FreeResource function. These additional management
functions are intended to provide enhanced management capabilities in server systems configured with a variety
of controllers or a large number of concurrently executing applications.

To insure efficient operation of multiple applications and drivers in the server environment, incoming message
signaling is required by the NetWare CAPI Manager. The CAPI_Register function defines additional signal
parameters, which must be provided by the application in order to register successfully. Applications are not
permitted to poll for incoming messages. Because signaling is required and signal parameters are specified at
registration time, the CAPI1_SetSignal function is not included in this implementation of COMMON-ISDN-API.

For a complete definition of the auxiliary and driver functions, please refer to the NetWare CAPI Manager and
CAPI Driver Specification. The function descriptions provided in this section reflect only the standard
COMMON-ISDN-API function set provided by the NetWare CAPI Manager. Note that in some cases the
parameter lists required by the NetWare CAPI Manager version of COMMON-ISDN-API functions are different
from other operating system implementations.

78 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Function Call Conventions in the NetWare Environment:

» Allinterface functions conform to standard C language calling conventions.

« All functions can be called from either a process or an interrupt context.

e COMMON-ISDN-API defines a standard 16-bit error code format in which bits 8 to 15 identify the
error class and bits 0 to 7 identify the specific error. This approach is used throughout this section as
well, but with one difference: namely, that all functions return either a DWORD (unsigned long) or a
void type rather than a 16-bit WORD type. Bits 31 to 16 of the return value will always be zero.

Data Type Conventions in NetWare environment:

e Structures are used with byte alignment.
» The following additional simple data types are used:

BYTE
WORD
DWORD
BYTE *
WORD *
VOID *
VOID **

unsigned 8 bit integer value

unsigned 16-bit integer value

unsigned 32-bit integer value

32-bit pointer to an unsigned char

32-bit pointer to an unsigned 16-hit integer
32-bit pointer

32-bit pointer to a 32-bit pointer

Chapter 8.6: NetWare

79

8.6.1 Message Operations

8.6.1.1 CAPI_Register

80

Description

Applications use CAPI_Register to register their presence with COMMON-ISDN-
API. Registration parameters specify the maximum number of ISDN logical connec-
tions, the message buffer size, the number of data buffers and the data buffer size
required by the application. The message buffer size is normally calculated according
to following formula:

Message buffer size = 1024 + (1024 * number of ISDN logical connections)

Incoming message signaling parameters are also supplied. Successful registration
causes COMMON-ISDN-API to assign a system-unique application identifier to the
caller. This application identifier is presented in subsequent COMMON-ISDN-API
function calls as well as in COMMON-ISDN-API defined messages. Two options are
supported for signaling incoming message availability. The signalType and sig-
nalHandle parameters allow an application to select either CLIB Local Semaphore or
direct function call-back notification. Application polling of the incoming message
gueue is not permitted. Successful application registration requires the selection of an
incoming message signaling mechanism.

Applications which maintain a CLIB process context should select Local Semaphore
signaling in the signalType parameter, and supply a previously allocated Local Sema-
phore handle as the signalHandle parameter. The application’s receiving process can
then wait on the local semaphore. When an incoming message is available, the CAPI
driver will signal the local semaphore, causing the application process to wake up and
retrieve a message by calling the CAPI_GetMessage function.

Applications which do not maintain a CLIB process context should select direct call-
back signaling in the signalType parameter, supply a pointer to an application-resident
notification function as the signalHandle parameter, and pass an application-defined
context value as the signalContext parameter. When an incoming message is available,
COMMON-ISDN-API will call the specified application notification function,
presenting the application context value. The application then calls the
CAPI_GetMessage function to retrieve any available messages.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Function call

DWORD CAPI_Register(WORD messageBufSize,

WORD connectionCnt,
WORD dataBlockCnt,
WORD dataBlockLen,
WORD *applicationID
WORD signalType,
DWORD signalHandle,
DWORD signalContext,

);

Parameter

Comment

messageBufSize

Specifies the message buffer size.

connectionCnt

Specifies the maximum number of logical connections this application can
maintain concurrently. Any attempt by the application to exceed the logical
connection count by accepting or initiating additional connections will
result in a connection establishment failure and an error indication from the
CAPI driver.

dataBlockCnt

Specifies the maximum number of received data blocks that can be reported
to the application simultaneously for each B channel connection. The
number of B channel data blocks has a decisive effect on the throughput of
B channel data in the system and should be between 2 and 7. At least two B
channel data blocks must be specified.

dataBlockLen

Specifies the maximum size of a B channel data unit which can be
transmitted and received. Selection of a protocol that requires larger data
units, or attempts to transmit or receive larger data units, will result in an
error from COMMON-ISDN-API.

applicationID

This parameter specifies a pointer to a location where the CAPI Manager
will place the assigned application identifier during registration . This value
is valid only if the registration operation was successful, as indicated by a
return code of 0x0000.

signalType

Specifies the incoming message signaling mechanism selected by the appli-
cation. The signaling mechanism is used by the driver to notify the appli-
cation when incoming control or data messages are available or when queue
full / busy conditions change. The signalType parameter also defines the
meaning of the signalHandle parameter. Two signalType constants are de-
fined as follows:

0x0001 SIGNAL_TYPE_LOCAL_SEMAPHORE

0x0002 SIGNAL TYPE CALLBACK

signalHandle

Depending on the value of the signalType parameter, signalHandle speci-
fies either the local semaphore handle previously allocated to the applica-
tion, or the address of an application-resident receive notification function
with the following format:

void CAPI_ReceiveNotify(DWORD signalContext); (see below).

signalContext

If the signal Type parameter contains SIGNAL_TYPE_CALLBACK, the
signalContext specifies an application-defined context value. This value
will be passed to the application notification function. The signalContext
value has no meaning to CAPI. It may be used by an application to
reference internal data structures etc. during the receive natification
callback process. If the signalType parameter specifies

SIGNAL_TYPE LOCAL_SEMAPHORE, this value is ignored.

Chapter 8.6: NetWare 81

Return Value

Return Value Comment

0x0000 Registration successful: application identification number has been as-
signed

All other values Coded as described in parameter Info, class 0x10xx

CAPI_ReceiveNotify

82

Description

This optional application-resident receive notification function is called by the
NetWare CAPI Manager implementation of the COMMON-ISDN-API whenever an
incoming message addressed to the application is available. This function is intended
for exclusive use by NetWare system applications which do not maintain a CLIB
context. Use of this function is enabled at application registration time by setting the
signalType parameter in CAPI_Register to SIGNAL_TYPE_CALLBACK. Note that
non-system-level applications should always use local semaphores for receive
message notification by setting the signalType parameter in CAPI_Register to
SIGNAL_TYPE_LOCAL_SEMAPHORE.

Each time the CAPI_ReceiveNotify function is called, it should in turn call
CAPI_GetMessage to retrieve the next available message addressed to the application.
The signalContext parameter passed to the CAPI_ReceiveNotify function contains an
application-defined context value previously supplied in the CAPI_Register function.
This value is meaningful only to the application, as an internal data structure pointer,
for example.

Note

The CAPI_ReceiveNotify function can be called from either the process or interrupt
context. To avoid adverse system impact, blocking operations such as disk input
output should not performed by the receive notify function. If blocking operations are
required they should be executed from a separate application supplied process.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.6.1.2 CAPI_Release

Description

Applications use CAPI_Release to log off from COMMON-ISDN-API. All memory
allocated on behalf of the application by COMMON-ISDN-API will be released.

Function call

[DWORD CAPI Release (WORD ApplID);

Parameter

Comment

ApplID

Application identification number assigned by the function CAPI_Register

Return Value

Return Value

Comment

0x0000

Application successfully released

All other values

Coded as described in parameter Info, class 0x11xx

Chapter 8.6: NetWare

83

8.6.1.3 CAPI_PutMessage

Description

Applications call CAPI_PutMessage to transfer a single message to COMMON-

ISDN-API.

Function call

DWORD CAPI_PutMessage(WORD ApplID,

VOID *pCAPIMessage

)
Parameter Comment
ApplID Application identification number assigned by the function CAPI_Register

pCAPIMessage

Pointer to a memory block which contains a message for the CAPI Driver

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class 0x11xx

Note

When the process returns from the function call, the message memory area can be
reused by the application.

84

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.6.14 CAPI_GetMessage

Description

Applications call CAPl_GetMessage to retrieve a single message from COMMON-
ISDN-API. If a message is available, it address is returned to the application in
location specified by the ppCAPIMessage parameter. If there are no messages
available from any of the registered drivers, CAPI_GetMessage returns with an error
indication.

The contents of the message block returned by this function are valid until the same
application calls CAPI_GetMessage again. Applications which process the message
asynchronously or need to maintain the message beyond the next call to
CAPI_GetMessage must make a local copy of the message.

Function call

DWORD CAPI_GetMessage(WORD ApplID,
VOID** ppCAPIMessage

);
Parameter Comment
ApplID Application identification number assigned by the function CAPI_Register
ppCAPIMessage Pointer to the memory location where the CAPI Manager should place the
retrieved message address. The contents of the output variable specified by
ppCAPIMessage is valid only if the return code indicates no error.

Return Value

Return Value Comment
0x0000 Successful: message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Chapter 8.6: NetWare 85

8.6.2 Other Functions

8.6.2.1 CAPI_GetManufacturer

Description

Applications call CAPI_GetManufacturer to retrieve manufacturer-specific identifi-
cation information from the specified ISDN controller.

Function call

DWORD CAPI_GetManufacturer(DWORD Controller,

BYTE *szBuffer
);
Parameter Comment
Controller Specifies the system-unique controller number for which manufacturer
information is to be retrieved. Coding is described in Chapter 6.
szBuffer Specifies a pointer to an application data area 64 bytes long which will

contain the manufacturer identification information upon successful return.
The identification information is represented as a zero-terminated ASCII
text string.

Return Value

Return Value

Comment

0x0000

Successful: information was retrieved from COMMON-ISDN-API

All other values

Coded as described in parameter Info, class 0x11xx

86

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.6.2.2

Description

CAPI_GetVersion

Applications call CAPI_GetVersion to retrieve version information from the specified
ISDN controller. Major and minor version numbers are returned for both COMMON-
ISDN-API and the manufacturer-specific implementation.

Function call

DWORD CAPI_GetVersion(DWORD Controller,

WORD *pCAPIMajor,
WORD *pCAPIMinor,
WORD *pManufacturerMajor,
WORD *pManufacturerMinor

WORD *pManagerMajor
WORD *pManagerMinor
);
Parameter Comment
Controller Specifies the system-unique controller number for which the manufacturer
information is to be retrieved. Coding is described in Chapter 6.
pCAPIMajor Pointer to a WORD which will receive the COMMON-ISDN-API major
version number: 0x0002
pCAPIMinor Pointer to a WORD which will receive the COMMON-ISDN-API minor
version number: 0x0000
pManufacturerMajor Pointer to a WORD which will receive the manufacturer-specific major

number

pManufacturerMinor

Pointer to a WORD which will receive the manufacturer-specific minor
number

pManagerMajor

Pointer to a WORD which will receive the CAPI Manager major version
number

pManagerMinor

Pointer to a WORD which will receive the CAPI Manager minor version
number

Return Value

Return

Comment

0x0000

No error, version numbers have been copied

All other values

Coded as described in parameter Info, class 0x11xx

Chapter 8.6: NetWare

87

8.6.2.3 CAPI_GetSerialNumber

Description

Applications call CAP1_GetSerialNumber to retrieve the optional serial number of the
specified ISDN controller.

Function call

DWORD CAPI_GetSerialNumber(DWORD Controller,
BYTE *szBuffer
Pk
Parameter Comment
Controller Specifies the system-unique controller number for which the serial number
information is to be retrieved. Coding is described in Chapter 6.
szBuffer Pointer to a buffer of 8 bytes

Return Value

Return Comment

0x0000 No error

szBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

All other values Coded as described in parameter Info, class Ox11xx

88 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.6.2.4 CAPI_GetProfile

Description

The application uses this function to get information on the ISDN controller’s
capabilities from COMMON-ISDN-API. Buffer is a pointer to a buffer of 64 bytes.
COMMON-ISDN-API copies information to this buffer about implemented features,
the number of controllers and supported protocols. Controller contains the number of
the controller (bit 0..6) for which this information is requested. The profile structure
retrieved is described at the beginning of Chapter 8.

DWORD CAPI_GetProfile (VOID *Buffer,
DWORD Controller
);
Parameter Comment
Buffer Pointer to a buffer of 64 bytes
Controller Number of Controller. If 0, only number of installed controllers is returned
to the application.

Return Value

Return Comment
0x0000 No error
Buffer contains the requested information.
All other values Coded as described in parameter Info, class 0x11xx

Chapter 8.6: NetWare 89

90

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.7 Windows NT (Application Level)

In the operating system Windows NT 3.x / 4.x, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library).

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification.

Chapter 8.7: Windows NT (Application Level) 91

92

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.8 Windows NT (Device Driver Level)

For kernel-mode applications, COMMON-ISDN-API 2.0 must be implemented as kernel-mode device driver.
The interface to such a kernel-mode device driver in Windows NT is based on 1/O request packets (IRPs), which
can be sent to the driver by either kernel-mode or user-mode applications.

COMMON-ISDN-API can be accessed as described in Chapter 8: Specifications for Commercial Operating
Systems, Subclause 8.20: Windows XP (Device Driver Level), without modification.

Chapter 8.8: Windows NT (Device Driver Level) 93

94

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.9 Windows 95 (Application Level)

Under the operating system Windows 95, three types of user-mode applications can access COMMON-1SDN-
API:

* DOS-based applications
« Windows 3.x-based applications (16-hit)
« Windows 95-based applications (32-bit)

Each of these application types is able to use COMMON-ISDN-API.

8.9.1 DOS-based Applications

DOS-based applications continue to use the software interrupt mechanism of COMMON-ISDN-API as
described in Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.1: MS-DOS. The
implementation must also support a FAR CALL (after pushing flags) to the entry address of COMMON-ISDN-
API.

8.9.2 Windows 3.x-based Applications (16-bit)

Windows-based applications (16-bit) use the DLL mechanism of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.2: Windows (Application Level),
without modification. The CAPI120.DLL provided in Windows 95 has an identical interface to applications as
that in Windows 3.x.

8.9.3 Windows 95-based Applications (32-bit)

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification. The CAPI12032.DLL provided in Windows 95 has an identical interface to applications as that in
Windows NT.

Chapter 8. 9: Windows 95 (Application Level) 95

96

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.10 Windows 95 (Device Driver Level)

COMMON-ISDN-API for Windows 95 must be implemented as a Virtual Device Driver (VxD). The interface
to such a kernel-mode driver consists of exported Virtual Device Services for other virtual devices and a
Virtual Device API for protected-mode applications (16 or 32-bit) which access the features of the virtual
device (i.e. CAPI20.DLL / CAPI2032.DLL). Both interfaces exchange information in CPU registers. The
exchange mechanism described in Chapter 8: Specifications for Commercial Operating Systems, Subclause
8.1: MS-DOS is used, and adapted to the 32-bit environment where necessary. The CAPI VxD shall also hook
the software interrupt F1 to offer COMMON-ISDN-API to DOS-based applications.

User-mode applications shall not use the device driver level interface directly. Instead, they must use the

specified access methods (i.e. software interrupt or DLL mechanism) to access COMMON-ISDN-API.

Architectural Overview:

4 N [N [N
DOS 16-bit Windows 32-bit Windows Kernel Mode
Applications Applications Applications Programs
o AN 4
(other VxDs)
4 3\ 4 3\
CAPI20.DLL CAPI2032.DLL
| J/ | J/ \ /
Software Interrupt F1 VxD API VxD Services
CAPI VxD

Figure 2: Architectural Overview

Chapter 8.10: Windows 95 (VxD Device Driver Level)

97

Virtual Device Services can be used by other virtual devices by including an appropriate header file which
contains the service table declaration. A virtual device calls the CAPI VVxD’s services using the VxDcall macro.
To verify the availability of CAPI VXD services, the calling virtual device must attempt to call the Get_Version
service of CAPI VxD. If the CAPI VD has not been loaded, the VMM sets the carry flag and returns zero in the
AX register. The virtual device which provides COMMON-ISDN-API exports one CAPI-specific service,
namely an access to the message exchange functions described in this chapter. Information is exchanged directly
in CPU registers.

The Virtual Device API is used by CAPI120.DLL and CAPI2032.DLL. These DLLs retrieve an entry point
address for the Virtual Device API procedure for their virtual machine. The CAPI VXD can obtain the calling
application’s register values via the Client_Reg_Struc structure.

The CAPI VxD provides synchronous services. If any COMMON-ISDN-API service is entered while an
asynchronous interrupt is being processed, the value 0x1107 (internal busy condition) is returned in the AX
register.

Every VxD has a unique device ID. The CAPI VXD has the device ID 0x3215.

Service table declaration from CAPI VxD:

VCAPID_DEVICE_ID EQU 3215h
Begin_Service_Table VCAPID
VCAPID_Service VCAPID_Get_Version, LOCAL
VCAPID_Service VCAPID_MessageOperations, LOCAL
End_Service_Table VCAPID

In this section, the term pointer has two meanings: with reference to the 16-bit Virtual Device API, pointer refers
to a 16:16 (segmented) pointer to a memory location; where the 32-bit Virtual Device API is concerned, a
pointer is a 0:32 near flat pointer to a memory location.

98 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.10.1

8.10.1

Message Operations

1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four registers ECX,
EDX, ESI and EDI.

For a typical application, the amount of memory required should be calculated by the
following formula:

ECX = 1024 + (1024 * EDX)

In the EDX register, the application specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

In the ESI register, the application specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

In the EDI register, the application specifies the maximum size of the application data
block to be transmitted and received. Selection of a protocol that requires larger data
units, or attempts to transmit or receive larger data units, will result in an error
indication from COMMON-ISDN-API. The default value for the protocol ISO 7776
(X.75) is 128 octets. COMMON-ISDN-API is able to support at least up to 2048
octets.

The application number is returned in AX. In the event of an error, the value O is
returned in AX, and the cause of the error is indicated in BX.

Chapter 8.10: Windows 95 (VxD Device Driver Level) 99

100

[CAPI REGISTER

0x01 |

Parameter Comment

AH Version number 20 (0x14)

AL Function code 0x01

ECX Size of message buffer

EDX Maximum number of Layer 3 connections

ESI Number of B3 data blocks available simultaneously
EDI Maximum size of a B3 data block

Return Value

Return Value Comment
AX <>0 Application number (ApplID)
0x0000 Registration error, cause of error in BX register
BX If AX == 0, coded as described in parameter Info, class
0x10xx
Note

If the application intends to open a maximum of one Layer 3 connection at a time and
use the standard protocols, the following register assignments are recommended:

ECX =2048, EDX =1, ESI =7, EDI =128

The resulting memory requirement is 2944 bytes.

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.10.1.2 CAPI_RELEASE

Description

The application uses this function to log out from COMMON-ISDN-API. The mem-
ory area indicated in the application’s CAPI_REGISTER call is released. The
application is identified by the application number in the EDX register. Any errors that
occur are returned in AX.

[CAPI RELEASE | 0x02 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x02
EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx

Chapter 8.10: Windows 95 (VxD Device Driver Level) 101

8.10.1.3 CAPI_PUT_MESSAGE

Description

With this function the application transfers a message to COMMON-ISDN-API. A
pointer to the message is passed in the EBX register. The application is identified by
the application number in the EDX register. Any errors that occur are returned in AX.

[CAPI PUT MESSAGE

0x03 |

Parameter Comment

AH Version number 20 (0x14)
AL Function code 0x03

EBX Pointer to message

EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
Note

After returning from the CAPI_PUT_MESSAGE call, the application can re-use the
memory area of the message. The message is not modified by COMMON-ISDN-

API.

102

COMMON-ISDN-API Version 2.0 - Part |l

4™ Edition

8.10.1.4 CAPI_GET_MESSAGE

Description

With this function the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve messages intended for the specified application
number. A pointer to the message is passed in the EBX register. If there is no message
queued for the application, the function returns immediately. Register AX contains the
corresponding error value. The application is identified by the application number in
the EDX register. Any errors that occur are returned in AX.

[CAPI GET MESSAGE

0x04 |

Parameter Comment

AH Version number 20 (0x14)
AL Function code 0x04

EDX Application number

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
EBX Pointer to message, if available
Note

The message may be made invalid by the next CAPI_GET_MESSAGE call.

Chapter 8.10: Windows 95 (VxD Device Driver Level)

103

8.10.2 Other Functions

8.10.2.1 CAPI_SET_SIGNAL

104

Description

The application can use this function to activate the use of the synchronous (non-
interrupt) call-back function. A pointer to a call-back function is specified in the EBX
register. The signaling function can be deactivated by a CAPI_SET_SIGNAL call
with the value 0 in the EBX register. The application is identified by the application
number in the EDX register. Any errors that occur are returned in the AX register.

[CAPI SET SIGNAL | 0x05 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0x05
EDX Application number
EDI Parameter passed to call-back function
EBX Pointer to call-back function

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
Note

The call-back function is always called in a synchronous environment, i.e. outside any
hardware interrupt condition. It is called as a NEAR function in a 32-bit environment,
so it must return by a RET. If used via the Virtual Device API (i.e. not from another
Virtual Device Driver), the context of the calling VM is available.

The call-back function is called by COMMON-ISDN-API after

. any message is queued in the application's message queue,
. an announced busy condition is cleared, or
. an announced queue full-condition is cleared.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Interrupts are enabled. The call-back function must be terminated by RET. All regis-
ters must be preserved.

COMMON-ISDN-API does not call this function recursively. If necessary, the call-
back function is called again after it returns control to COMMON-ISDN-API.

The call-back function is allowed to use the COMMON-ISDN-API operations
CAPI_PUT_MESSAGE, CAPI_GET_MESSAGE, and CAPI_SET_SIGNAL.

In the case of local confirmations (such as LISTEN_CONF), the call-back function
may be called before the operation CAPI_PUT_MESSAGE returns control to the
application.

Registers EDX and EDI are passed to the call-back function with the same values as
the corresponding parameters of CAPI_SET_SIGNAL.

Chapter 8.10: Windows 95 (VxD Device Driver Level) 105

8.10.2.2 CAPI_GET_MANUFACTURER

Description

By calling this function the application obtains the COMMON-ISDN-API
manufacturer identification. The application provides a pointer to a data area of 64
bytes in the EBX register. The manufacturer identification, coded as a zero-terminated
ASCII string, is present in this data area after the function has been executed.

[CAPI GET MANUFACTURER | 0xFO |
Parameter Comment
AH Version number 20 (0x14)
AL Function code OxF0
EBX Pointer to buffer
ECX Number of Controller. If 0, the manufacturer identification of
the software components is returned.

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
EBX Buffer contains manufacturer identification as an ASCII
string, terminated by a O byte.

106 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.10.2.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

[CAPI GET VERSION | OxF1|
Parameter Comment
AH Version number 20 (0x14)
AL Function code OxF1
ECX Number of Controller. If 0, the version of the software
components is returned.

Return Value

Return Comment

AH COMMON-ISDN-API major version: 2
AL COMMON-ISDN-API minor version: 0
DH Manufacturer-specific major number

DL Manufacturer-specific minor number

Chapter 8.10: Windows 95 (VxD Device Driver Level) 107

8.10.24 CAPI_GET_SERIAL_NUMBER

Description

With this function the application obtains the (optional) serial number of COMMON-
ISDN-API. The application provides a pointer to a data area of 8 bytes in register
EBX. The serial number, a seven-digit number coded as a zero-terminated ASCII
string, is present in this data area after the function has been executed. If no serial
number is supplied, the serial number is an empty string.

[CAPI GET SERIAL NUMBER | OxF2 |
Parameter Comment
AH Version number 20 (0x14)
AL Function code 0xF2
EBX Pointer to buffer
ECX Number of Controller. If 0, the serial number of the software
components is returned.

Return Value

Return Value Comment
AX 0x0000 No error

<>0 Coded as described in parameter Info, class 0x11xx
EBX Pointer to the (optional) serial number in plain text in the

form of a 7-digit number. If no serial number is used, a 0 byte
is written at the first position in the buffer. The end of the
serial number is indicated by a 0 byte.

108 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.10.2.5 CAPI_GET_PROFILE

Description

The application uses this function
API. Register EBX must contain

to determine the capabilities of COMMON-ISDN-
a pointer to a data area of 64 bytes. COMMON-

ISDN-API copies information about implemented features, the number of controllers
and supported protocols to this buffer. Register ECX contains the number of the
controller (bits 0..6) for which this information is requested. The profile structure
retrieved is described at the beginning of Chapter 8.

[CAPI GET PROFILE |

OxF3|

Parameter Comment

AH Version number 20 (0x14)

AL Function code OxF3

ECX Controller number (if 0, only the number of controllers is re-
turned)

EBX Pointer to buffer

Return Value

Return Value Comment
AX 0x0000 No error
<>0 Coded as described in parameter Info, class 0x11xx
Note

Applications must ignore unknown bits in the profile structure since this function may
be extended. COMMON-ISDN-API sets every reserved field to 0.

Chapter 8.10: Windows 95 (VxD Device Driver Level) 109

8.10.2.6

110

Description

CAPI_MANUFACTURER

This function is manufacturer-specific.

[CAPI MANUFACTURER

OXFF |

Parameter Comment
AH Version number 20 (0x14)
AL Function code OxFF

Manufacturer-specific

Return Value

Return

Comment

Manufacturer-specific

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.11 Windows 95 DeviceloControl

COMMON-ISDN-API can also be accessed by using DeviceloControl operations. The definition of this
interface is as close as possible to that of the Windows NT DeviceloControl interface. Since not all Windows NT
device operations are available under Windows 95, however, this interface cannot be defined as completely
compatible with the Windows NT definition.

The following DEVICE_CONTROL codes are defined for COMMON-ISDN-API functions:

/*
* the common device type code for CAP120 conforming drivers
*

/
#define FILE_DEVICE_CAPI120 0x8001
/*
* DEVICE_CONTROL codes
*/
#define CAPI_CTL_BASE 0x800
#define CAPI_CTL_REGISTER (CAPI_CTL_BASE + 0x0001)
#define CAPI_CTL_RELEASE (CAPI_CTL_BASE + 0x0002)
#define CAPI_CTL_PUT_MESSAGE (CAPI_CTL_BASE + 0x0003)
#define CAPI_CTL_GET_MESSAGE (CAPI_CTL_BASE + 0x0004)
#define CAPI_CTL_GET_MANUFACTURER (CAPI_CTL_BASE + 0x0005)
#define CAPI_CTL_GET_VERSION (CAPI_CTL_BASE + 0x0006)
#define CAPI_CTL_GET_SERIAL (CAPI_CTL_BASE + 0x0007)
#define CAPI_CTL_GET_PROFILE (CAPI_CTL_BASE + 0x0008)
#define CAPI_CTL_WAIT_MESSAGE (CAPI_CTL_BASE + 0x0009)
#define CAPI_CTL_MANUFACTURER (CAPI_CTL_BASE + 0x00ff)
/*
* The wrapped control codes as required by the system.
* Note: while use of these macros is not required,
* no other control parameters are allowed for the
* DeviceloControl control codes.
*

/

#define CAP1_CTL_CODE(function,method) \
CTL_CODE(FILE_DEVICE_CAPI20,function,method,FILE_ANY_ACCESS)

#define IOCTL_CAPI_REGISTER\\
CAPI_CTL_CODE(CAPI_CTL_REGISTER, METHOD_BUFFERED)

#define 10CTL_CAPI_RELEASE \
CAPI_CTL_CODE(CAPI_CTL_RELEASE, METHOD_BUFFERED)

#define 10CTL_CAPI_GET_MANUFACTURER\
CAPI_CTL_CODE(CAPI_CTL_GET_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_VERSION\
CAPI_CTL_CODE(CAPI_CTL_GET_VERSION, METHOD_BUFFERED)

#define I0CTL_CAPI_GET_SERIAL \
CAPI_CTL_CODE(CAPI_CTL_GET_SERIAL, METHOD_BUFFERED)

Chapter 8.11: Windows 95 (DeviceloControl) 111

#define I0CTL_CAPI_GET_PROFILE \

#define IOCTL_CAPI_MANUFACTURER\

#define IOCTL_CAPI_PUT_MESSAGE \

#define IOCTL_CAPI_GET_MESSAGE \

#define I0CTL_CAPI_WAIT_MESSAGE \

CAPI_CTL_CODE(CAPI_CTL_GET_PROFILE, METHOD_BUFFERED)

CAPI_CTL_CODE(CAPI_CTL_MANUFACTURER, METHOD_BUFFERED)

CAPI_CTL_CODE(CAPI_CTL_PUT_MESSAGE, METHOD_IN_DIRECT)

CAPI_CTL_CODE(CAPI_CTL_GET_MESSAGE, METHOD_OUT_DIRECT)

CAPI_CTL_CODE(CAPI_CTL_WAIT_MESSAGE, METHOD_BUFFERED)

CAPI20-specific return values are mapped to Win32 error codes according to the following table. The error code
is returned by GetLastError() after a failure of DeviceloControl().

Info Win32 Error Code

0x1001 ERROR_TOO MANY_SESSIONS
0x1002 ERROR_INVALID PARAMETER
0x1003

0x1004 ERROR_INSUFFICIENT_BUFFER
0x1005 ERROR_NOT_SUPPORTED

0x1006

0x1007 ERROR_NETWORK_ BUSY

0x1008 ERROR_NOT_ENOUGH_MEMORY
0x1009

0x100a ERROR_SERVER_DISABLED
0x100b ERROR_SERVER_NOT_DISABLED
0x1101 ERROR_INVALID_HANDLE
0x1102 ERROR_INVALID_FUNCTION
0x1103 ERROR_TOO MANY_CMDS
0x1104 ERROR_IO_PENDING

0x1105 ERROR_IO DEVICE

0x1106 STATUS_INVALID PARAMETER
0x1107 ERROR_BUSY

0x1108 ERROR_NOT_ENOUGH_MEMORY
0x1109

0x110a ERROR_SERVER_DISABLED
0x110b ERROR_SERVER_NOT_DISABLED

In Windows 95, all communications between a device and an application are associated with a file handle. For
this reason, a file handle is used instead of the application ID to link an application to the CAPI20 device. Any
application IDs contained in COMMON-ISDN-API messages are therefore ignored.

In the following, the interface between the application and the COMMON-ISDN-API device driver is described
by means of Win32 functions.

112

COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.11.1 Message Operations

8.11.11 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDatalen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

[CAPI REGISTER CAPI CTL REGISTER|

Implementation

For the CAPI_REGISTER operation, the application must first obtain a handle to the
COMMON-ISDN-API device using the Win32 CreateFile() function, then send a
CAPI_CTL_REGISTER to the COMMON-ISDN-API device. CAPI_REGISTER
passes the following data structure to the driver:

struct capi_register_params {

Chapter 8.11: Windows 95 (DeviceloControl) 113

114

WORD MessageBufferSize,

WORD maxLogicalConnection,

WORD maxBDataBlocks,

WORD maxBDatalen

¥

Only one CAPI_CTL_REGISTER may be sent with a given handle before a
CAPI_CTL_RELEASE is sent. If an application program wants to register as more
than one COMMON-ISDN-API application, it must obtain several handles using
CreateFile() and send one CAPI_CTL_REGISTER with each handle. The
FILE_FLAG_OVERLAPPED option for fdwAttrsAndFlags must be set for proper
operation.

Example:

capi_handle = CreateFile("\.\CAPI20",
GENERIC_READ | GENERIC_WRITE,
01
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);

r.MessageBufferSize = MessageBufferSize;
r.maxLogicalConnection = maxLogicalConnection;
r.maxBDataBlocks = maxBDataBlocks;
r.maxBDatalLen = maxBDatal en;

ret = DeviceloControl(capi_handle,
CAPI_CTL_REGISTER,
(PVOID) &r,
sizeof(r),
NULL,
0,
&ret_bytes,
NULL);

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.11.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. This
signals to COMMON-ISDN-API that all resources allocated by COMMON-ISDN-
API for the application can be released.

[CAPI RELEASE CAPI CTL RELEASE |

Implementation

A CAPI_RELEASE can be performed in one of two ways. If the same handle is to be used
again, a CAPI_CTL_RELEASE must be sent. If the handle is no longer needed, the
COMMON-ISDN-API device may be simply closed using CloseHandle.

Example:

ret = DeviceloControl(capi_handle,
CAPI_CTL_RELEASE,
NULL,
0,
NULL,
0,
&ret_bytes,
NULL);
CloseHandle(capi_handle);

Chapter 8.11: Windows 95 (DeviceloControl) 115

8.11.1.3 CAPI_PUT_MESSAGE

116

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself by a file handle.

[CAPI PUT MESSAGE CAPI CTL_PUT MESSAGE]|

Implementation

The CAPI_PUT_MESSAGE function is performed using a
CAPI_CTL_PUT_MESSAGE DeviceloControl.

With this DeviceloControl operation, one data buffer is sent to the CAPI20 device
driver. This buffer must contain the message and, in the case of a DATA_B3_REQ
message, the associated data. The data (if applicable) must be placed in the buffer
immediately following the message.

ret = DeviceloControl(capi_handle,
CAPI_CTL_PUT_MESSAGE,
(PVOID)msg, /* buffer for message + data */
msg_length, /* length of message + data */
NULL,
0,
&ret_bytes,
NULL);

This operation is completed immediately, without waiting for any network event (in
normal CAPI_PUT_MESSAGE operation).

The buffer can be re-used by the application as soon as the operation is completed.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.11.14 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application retrieves each message associated with the specified file handle
obtained in the CAPI_REGISTER operation.

[CAPI GET MESSAGE CAPI CTL GET MESSAGE |

Implementation

The CAPI_GET_MESSAGE function is performed using the
CAPI_CTL_GET_MESSAGE DeviceloControl operation.

With the CAPI_CTL_GET_MESSAGE DeviceloControl operation, one data buffer is
received from the CAPI20 device driver. This buffer contains the message and, in the
case of a DATA _B3_IND message, the associated data. The data (if applicable) is
located in the buffer immediately following the message.

CAPI_CTL_GET_MESSAGE supports overlapped operation. If it returns TRUE, the
number of bytes in the message retrieved is available.

If the buffer provided by the application is to small to hold the message and the data,
an ERROR_INSUFFICIENT_BUFFER error is returned and no message is retrieved.

Example:

ret = DeviceloControl(capi_handle,
CAPI_CTL_GET_MESSAGE,
NULL,
0,
(PVOID)buffer, /* buffer for message + data */
buffer_size, /* length of message + data */
&ret_bytes,
&0 read);

if (ret==TRUE) {
[* operation succeeded immediately */
[* ret_bytes contains the number of bytes accepted */

} else if (GetLastError() == ERROR_IO_PENDING) {
[* operation pending, must wait for completion */
WaitForSingleObject(result.hEvent, INFINITE);
ret = GetOverlappedResult(capi_handle, &result, &ret_bytes, TRUE);
if (ret == TRUE) {

Chapter 8.11: Windows 95 (DeviceloControl) 117

/* operation successfully completed now */
/* ret_bytes contains the number of bytes accepted */

}else { '

/* sorry, failure */

¥
}else {
[* operation failed immediately */
}
118 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.11.1.5 CAPI_SET_SIGNAL

There is no CAPI_SET_SIGNAL function. Asynchronous signaling of a received
message is implicit in the completion of the CAPI_CTL_GET_MESSAGE operation.

Chapter 8.11: Windows 95 (DeviceloControl) 119

8.11.2 Other Functions

8.11.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API manufacturer
identification. The application provides a buffer of at least 64 bytes. COMMON-
ISDN-API copies the identification, coded as a zero-terminated ASCII string, to this
buffer.

[CAPI GET MANUFACTURER CAPI CTL_GET MANUFACTURER]

Implementation

The manufacturer identification is read from the COMMON-ISDN-API driver using
CAPI_CTL_GET_MANUFACTURER. A buffer of 64 bytes must be provided by the
application. The manufacturer identification is returned as a zero-terminated ASCII
string. The controller number 0 returns the manufacturer name of the CAPI20 device
driver; other controller numbers return the manufacturer of the corresponding

controller.
DWORD controller; [* 32-bit */
char manufacturer[64];
controller = 0; /* to retrieve the manufacturer of the device driver */

ret = DeviceloControl(capi_handle,
CAPI_CTL_GET_MANUFACTURER,
(PVOID) &controller,
sizeof (controller),
(PVOID) manufacturer,
sizeof (manufacturer),
&ret_bytes,
(POVERLAPPED) NULL);

120 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.11.2.2 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number.

[CAPI GET VERSION CAPI CTL GET VERSION|

Implementation

The version of COMMON-ISDN-API is read using CAPI_CTL_GET_VERSION. A
buffer with the following structure must be provided by the application:

struct capi_version_params {
WORD CAPIMajor; /* 16-bit */
WORD CAPIMinor;
WORD ManufacturerMajor;
WORD ManufacturerMinor;
} buf;

The controller number 0 returns the version info of the CAPI20 device driver; other
controller numbers return the version of the corresponding controller.

DWORD controller; [* 32-bit */

controller = 0; /* to retrieve the version of the device driver */
ret = DeviceloControl(capi_handle,

CAPI_CTL_GET_VERSION,

(PVOID) &controller,

sizeof (controller),

(PVOID) &buf,

sizeof (buf),

&ret_bytes,

(POVERLAPPED) NULL);

Chapter 8.11: Windows 95 (DeviceloControl) 121

8.11.23 CAPI_GET SERIAL_NUMBER

122

Description

With this operation the application obtains the (optional) serial number of
COMMON-ISDN-API. The application provides a buffer of 8 bytes. COMMON-
ISDN-API copies the serial number string to this buffer. The serial number, a seven-
digit number coded as a zero-terminated ASCII string, is present in this buffer after the
function has returned.

[CAPI GET SERIAL NUMBER CAPI CTL_GET SERIAL_NUMBER]

Implementation

With CAPI_CTL_GET_SERIAL_NUMBER the COMMON-ISDN-API serial
number can be obtained from the driver. A buffer of 8 bytes must be provided by the
application. The serial number is returned in this buffer as a zero-terminated ASCII
string. The controller number 0O returns the serial number of the CAPI20 device driver;
other controller numbers return the serial number of the corresponding controller.

char serial[8];
DWORD controller; [* 32-bit */
controller = 0; /* to retrieve the serial number of the device driver */

ret = DeviceloControl(capi_handle,
CAPI_CTL_GET_SERIAL_NUMBER,
(PVOID) &controller,
sizeof (controller),
(PVOID) serial,
sizeof (serial),
&ret_bytes,
(POVERLAPPED) NULL);

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.11.2.4 CAPI_GET_PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
APl. COMMON-ISDN-API copies information about implemented features, the
number of controllers and supported protocols to the buffer profile. The double-word
controller contains the number of the controller (bit 0..6) for which this information is
requested. The profile structure retrieved is described at the beginning of Chapter 8.

[CAPI GET PROFILE CAPI CTL GET PROFILE]

Implementation

The COMMON-ISDN-API capabilities can be obtained from the driver by this
DeviceloControl. The application must provide a buffer formatted according to the
COMMON-ISDN-API profile structure in the profile parameter. This buffer is filled in
with the appropriate values by the DeviceloControl call.

char profile[64];
DWORD controller; [* 32-hit */
controller = 1; /* to retrieve the profile of controller number one */

ret = DeviceloControl(capi_handle,
CAPI_CTL_GET_PROFILE,
(PVOID) &controller,
sizeof (controller),
(PVOID)profile,
sizeof (profile),
&ret_bytes,
(POVERLAPPED) NULL);

Chapter 8.11: Windows 95 (DeviceloControl) 123

124 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.12 Windows 98 (Application Level)

Under the operating system Windows 98, three types of user-mode applications can access COMMON-ISDN-
API:

e DOS-based applications,
» Windows 3.x-based applications (16-bit, Win3.x), and
» Win32-based applications (32-bit, Windows 95 / Windows NT).

Each of these application types is able to use COMMON-ISDN-API.

8.12.1 DOS-based Applications

DOS-based applications continue to use the software interrupt mechanism of COMMON-ISDN-API as
described in Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.1: MS-DOS. The
implementation must also support a FAR CALL (after pushing flags) to the entry address of COMMON-ISDN-
API.

8.12.2 Windows 3.x-based Applications (16-bit)

Windows-based applications (16-bit) use the DLL mechanism of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.2: Windows 3.x (Application
Level), without modification. The CAPI20.DLL provided in Windows 98 has the identical interface to
applications as that in Windows 3.x.

8.12.3 Win32-based Applications (32-bit)

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification.

Chapter 8.12: Windows 98 (Device Driver Level) 125

126 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.13 Windows 98 (Device Driver Level)

8.13.1 Windows 95-based Virtual Device Driver (VxD)

Windows 95-based Virtual Device Drivers (VxD) use the interface of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.10: Windows 95 (Device Driver
Level), without modification.

8.13.2 Win32 Driver Model-based Device Driver (WDM)

Win32 Driver Model-based device drivers (WDM) use the interface of COMMON-ISDN-API as described in
Chapter 8: Specifications for Commercial Operating Systems, Subclause 8.20: Windows XP (Device Driver
Level) without modification.

Chapter 8.13: Windows 98 (Device Driver Level) 127

128 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.14 Windows 2000 (Application Level)

In the operating system Windows XP 32bit, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library).

Windows-based applications (32-bit) can use the DLL mechanism as described in Chapter 8: Specifications
for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level), without
modification

Chapter 8.14: Windows 2000 (Application Level) 129

130 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.15 Windows 2000 (Device Driver Level)

For kernel-mode applications, COMMON-ISDN-API 2.0 must be implemented as kernel-mode device driver.
The interface to such a kernel-mode device driver in Windows NT is based on 1/O request packets (IRPs), which
can be sent to the driver by either kernel-mode or user-mode applications.

COMMON-ISDN-API can be accessed as described in Chapter 8: Specifications for Commercial Operating
Systems, Subclause 8.20: Windows XP (Device Driver Level), without modification.

Chapter 8.15: Windows 2000 (Device Driver Level) 131

132 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.16 Linux

Under the operating system Linux the COMMON-ISDN-API services are provided via a (shared) library. The
interface between applications and COMMON-ISDN-API is realized as a function interface. An application can
issue COMMON-ISDN-API function calls to perform COMMON-ISDN-API operations.

The functions are exported under following names:

capi20_register
capi20_release
capi20_put_message
capi20_get_message
capi20_waitformessage
capi20_get_manufacturer
capi20_get_version
capi20_get_serial_number
capi20_get profile
capi20_isinstalled
capi20 _fileno

In the Linux environment all required types for the functional interface to the COMMON-ISDN-API services

can be included as follows:

#include <sys/types.h>
#include <linux/capi.h>
#include <capi20.h>

Chapter 8.16: Linux 133

8.16.1 Message Operations

8.16.1.1 CAPI_REGISTER

134

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the three parameters
MaxLogicalConnection, MaxBDataBlocks and MaxBDataLen.

Parameter MaxLogicalConnection specifies the maximum number of logical
connections this application can concurrently maintain. Any application attempt to
exceed the logical connection count by accepting or initiating additional connections
will result in a connection set-up failure and an error indication from COMMON-
ISDN-API.

Parameter MaxBDataBlocks specifies the maximum number of received data blocks
that can be reported to the application simultaneously for each logical connection. The
number of simultaneously available data blocks has a decisive effect on the data
throughput in the system and should be between 2 and 7. At least two data blocks must
be specified.

Parameter MaxBDatalen specifies the maximum size of the application data block to
be transmitted and received. Selection of a protocol that requires larger data units, or
attempts to transmit or receive larger data units will result in an error indication from
COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is 128
octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

unsigned capi20_register (unsigned maxLogicalConnection,
unsigned maxBDataBlocks,
unsigned maxBDatal en,
unsigned *pApplID);

Parameter Comment

MaxLogicalConnection Maximum number of logical connections

MaxBDataBlocks Number of data blocks available simultaneously

maxBDatalLen Maximum size of a data block

pApplID Pointer to the location where COMMON-ISDN-API is to place the

assigned application identification number

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Return Value

Return Value

Comment

0x0000

Registration successful: application identification number was assigned

All other values

Coded as described in parameter Info, class Ox10xx.

Chapter 8.16: Linux

135

8.16.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from COMMON-ISDN-API.
COMMON-ISDN-API will release all resources that have been allocated. The
application is identified by the application identification number that had been as-
signed in the previous CAPI_REGISTER operation.

Function call
[unsigned capi20 release (unsigned ApplID);
Parameter Comment
ApplID Application identification number assigned by the function
CAPI_REGISTER

Return Value

Return Value Comment

0x0000 Release of the application successful

All other values Coded as described in parameter Info, class 0x11xx
136 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.16.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself with an application identification number.

Function call
unsigned capi20_put_message (unsigned ApplID,
unsigned char *Msg);
Parameter Comment
ApplID Application identification number (ApplID)
Msg Pointer to the message that is passed to COMMON-ISDN-API

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class 0x11xx

Note

When the process returns from the function call the message memory area can be
reused by the application.

Chapter 8.16: Linux

137

8.16.1.4 CAPI_GET MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve those messages intended for the stipulated appli-
cation identification number. If there is no message waiting for retrieval, the function
returns immediately with an error code.

Function call
unsigned capi20_get_message (unsigned ApplID,
unsigned char **Buf);
Parameter Comment
ApplID Application identification number (ApplID)
Buf Pointer to the memory location where COMMON-ISDN-API should place
the pointer to the retrieved message

Return Value

Return Value Comment
0x0000 No error— message was retrieved from COMMON-ISDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message becomes invalid the next time the application issues a
CAPI_GET_MESSAGE operation for the same application identification number.
This especially matters in multi threaded applications where more than one thread may
execute CAPI_GET_MESSAGE operations. The synchronization between threads has
to be done by the application.

138 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.16.2 Other Functions

8.16.2.1 CAPI_WAIT_FOR_MESSAGE

Description

This operation is used by the application to wait for an asynchronous event from the

CAPI.
Function call
unsigned capi20_waitformessage (unsigned ApplID,
struct timeval *TimeOut);
Parameter Comment
ApplID Application identification number (ApplID)
TimeOut Pointer to a struct timeval value containing the maximum time to wait. If
NULL, the function waits until a message is available or a capi_release is
done.

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class 0x11xx

Note

This function returns as soon as a message from CAPI is available or another
application’s thread issues a capi20_release() call.

Chapter 8.16: Linux

139

8.16.2.2 CAPI_GET_MANUFACTURER

140

Description

With this operation the application determines the manufacturer identification of
COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to a buffer of
64 bytes. COMMON-ISDN-API copies the identification string, coded as a zero ter-
minated ASCII string, to this buffer.

Function call

unsigned char *capi20_get_manufacturer (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment

Ctrl Number of the controller. If 0, the manufacturer identification of the kernel
driver is provided to the application.

Buf Pointer to a buffer of 64 bytes

Return Value

Return Value Comment
0x0000 Error: no information available
All other values Pointer to the buffer

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.162.3 CAPI_GET_VERSION

Description

With this function the application determines the version (as well as an internal
revision number) of COMMON-ISDN-API or the controller(s).

Function call
unsigned char *capi20_get_version (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment

Ctrl Number of the controller. If 0, the version of the kernel driver is provided
to the application.

Buf Pointer to a buffer long enough for COMMON-ISDN-API to store four 32
bit values: the first pair of values is the version number of COMMON-
ISDN-API or the controller (first value: major version number (2), second
value: minor version number (0)), the second pair is a manufacturer-specifc
version (third value: major manufacturer version number, fourth value:
minor manufacturer version number)

Return Value

Return Value

Comment

0x0000

Error: no information available

All other values

Pointer to the buffer

Chapter 8.16: Linux 141

8.16.2.4 CAPI_GET SERIAL_NUMBER

142

Description

With this operation the application determines the (optional) serial number of
COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to a buffer of 8
bytes. COMMON-ISDN-API copies the serial number string to this buffer. The serial
number, coded as a zero terminated ASCII string, represents seven digit number after
the function has returned.

Function call

unsigned char *capi20_get_serial_number (unsigned Ctrl,
unsigned char *Buf);

Parameter Comment

Ctrl Number of the controller. If 0, the serial number of the kernel driver is
provided to the application.

Buf Pointer to a buffer of 8 bytes.

Return Value

Return Value Comment
0x0000 Error: no information available
All other values Pointer to the buffer

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.16.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from COMMON-ISDN-API.
Buf contains a pointer to a data area of 64 bytes. In this buffer COMMON-ISDN-API
copies information about implemented features, number of controllers and supported
protocols. Ctrl contains the controller number (bit 0..6) for which this information is
requested. The retrieved structure format is described at the beginning of chapter 8.

Function call
unsigned capi20_get_profile (unsigned Ctrl,
unsigned char *Buf);
Parameter Comment
Ctrl Number of the controller. If 0, only the number of controllers installed is
provided to the application.
Buf Pointer to a buffer of 64 bytes.

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class Ox11xx

Note

This function can be extended, so an application has to ignore unknown bits.
COMMON-ISDN-API will set every reserved field to 0.

Chapter 8.16: Linux 143

8.16.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine if the ISDN hardware and
necessary drivers are installed.

Function call

[unsigned capi20 isinstalled (void);

Return Value

Return Value Comment

0x0000 COMMON-ISDN-API is installed.

All other values Coded as described in parameter Info, class Ox11xx
144 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.16.2.7 CAPI_FILENO

Description

This function can be used for old-style applications which require poll() or select().
The recommended approach (especially with regards to future versions which may no
longer support this call) is to use capi_waitformessage and threads.

Function call

[int capi20 fileno (

unsigned ApplID);

Parameter

Comment

ApplID

Application identification number assigned by the function
CAPI20_REGISTER

Return Value

Return Value

Comment

-1

Application identification number is illegal.

All other values

The file descriptor for the application identified by ApplID. This file
descriptor may be used only for poll() or select() system calls.

Chapter 8.16: Linux

145

146 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.17 Linux (Kernel Level)

For kernel-mode applications, the COMMON-ISDN-API 2.0 is implemented as an interface
containing function pointers for the individual services. The structure has the following definition:

struct capi_interface {

__ule
__ule
__ule
_ulé
_ul6
_ul6

__ule
__ule
__ule
_ul6
int

¥

(*capi_isinstalled) (void);

(*capi_register) (capi_register_params * rparam, __ul6 * applidp);
(*capi_release) (__ul6 applid);

(*capi_put_message) (__ul6 applid, struct sk_buff * msg);
(*capi_get_message) (__ul6 applid, struct sk_buff ** msgp);
(*capi_set_signal)

(

__ul6 applid,

void (*signal)(__ul6 applid, _ u32 param),

__U32 param

)i
(*capi_get_version) (__u32 contr, struct capi_version * verp);
(*capi_get_serial) (__u32 contr, __u8 serial[8]);
(*capi_get_profile) (__u32 contr, struct capi_profile * profp);
(*capi_get_manufacturer) (__u32 contr, __ u8 buf[64]);
(*capi_manufacturer) (unsigned int cmd, void *data);

The data types used in this structure are:

__u8, _ule, u32 unsigned int types of indicated bit length
struct capi_register_params defined in <linux/capi.h>

struct capi_version defined in <linux/capi.h>

struct capi_profile defined in <linux/capi.h>

struct capi_interface defined in <linux/kernelcapi.h>

struct capi_interface_user defined in <linux/kernelcapi.h>

struct sk_buf defined in <linux/skbuff.h>

Two functions are provided to set up the kernel-mode COMMON-ISDN-API:

struct capi_interface * attach_capi_interface(struct capi_interface_user *);
int detach_capi_interface(struct capi_interface_user *);

structure

Function attach_capi_interface() must be used to get access to the kernel-mode COMMON-ISDN-API by
means of a capi_interface structure. All further requests are performed with the function pointers of the structure.
The link between a client and kernel-mode COMMON-ISDN-API can be released by calling
detach_capi_interface(). A client of the kernel. mode COMMON-ISDN-API must provide an interface structure
containing the name of the client, a pointer to a callback function used to signal a controller’s up and down
status. If a client of kernel-mode COMMON-ISDN-API is not interested in this callback feature a NULL
pointer can be assigned to this structure field. The third field in the structure is used by kernel-mode
COMMON-ISDN-API internally:

struct capi_interface_user {

char
void

name[20];
(*callback)(unsigned cmd, _ u32 ctrl, void *data);

struct capi_interface_user *next;

Chapter 8.17: Linux (Kernel Level)

147

8.17.1 Message Operations

8.17.1.1 CAPI_REGISTER

148

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing three parameters via a
pointer to a capi_register_params structure. Pointer applidp is used to store the
application identification number in case of a successful registration.

The data type capi_register_params is defined as follows:

typedef struct capi_register_params {
_u32 level3cnt;
_u32 datablkent;
__u32 datablklen;

} capi_register_params;

Parameter field level3cnt specifies the maximum number of logical connections this
application can concurrently maintain. The special value -2 is used to assign as many
connections as supported by the controller. Any application attempt to exceed the
logical connection count by accepting or initiating additional connections will result in
a connection set-up failure and an error indication from kernel-mode COMMON-
ISDN-API.

Parameter field datablkcnt specifies the maximum number of received data blocks that
can be reported to the application simultaneously for each logical connection. The
number of simultaneously available data blocks has a decisive effect on the data
throughput in the system and should be between 2 and 7. At least two data blocks must
be specified.

Parameter datablklen specifies the maximum size of the application data block to be
transmitted and received. Selection of a protocol that requires larger data units, or at-
tempts to transmit or receive larger data units will result in an error indication from
kernel-mode COMMON-ISDN-API. The default value for the protocol ISO 7776
(X.75) is 128 octets. Kernel-mode COMMON-ISDN-API is able to support at least
up to 2048 octets.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Function call

__ul6 (*capi_register) (capi_register_params * Rparam,
ulé * Applidp);

Parameter Comment

Rparam Pointer to registration parameter structure.

Applidp Pointer to a 16 bit buffer for the application identification number. The
buffer will only be written as result of a successful registration.

Return Value

Return Value Comment
0x0000 No error, the application identification number has been stored.
All other values Coded as described in parameter Info, class Ox10xx.

Chapter 8.17: Linux (Kernel Level) 149

8.17.1.2

150

Description

The application uses this operation to log off from kernel-mode COMMON-ISDN-
API. Kernel-mode COMMON-ISDN-API will release all resources that have been
allocated. The application is identified by the application identification number that

CAPI_RELEASE

had been assigned in the previous CAPI_REGISTER operation.

Function call

[ul6 (*capi_release) (

~ul6 Applid);

Parameter

Comment

Applid

Application identification number assigned by the CAPI_REGISTER
operation.

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class OX11xx.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.17.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to kernel-mode COMMON-
ISDN-API. The application identifies itself with an application identification number.

Function call
__ul6 (*capi_put_message) (__ul6 Applid,
struct sk_buff * Msg);
Parameter Comment
Applid Application identification number assigned by the CAPI_REGISTER
operation.
Msg Pointer to the message that is passed to kernel-mode COMMON-ISDN-
API.
Return Value
Return Value Comment
0x0000 No error
0x1103 The send queue is full — the operation could not be performed.
All other values Coded as described in parameter Info, class Ox11xx.

Note

The message buffer Msg must have been allocated with alloc_skb() (see:
<linux/skbuff.h>). The low-level driver is responsible to release the buffer.

Chapter 8.17: Linux (Kernel Level) 151

8.17.1.4 CAPI_GET_MESSAGE

Description

With this operation the application retrieves a message from kernel-mode
COMMON-ISDN-API. The application can only retrieve those messages intended
for the stipulated application identification number. If there is no message waiting for
retrieval, the function returns immediately with an error code.

Function call
__ul6 (*capi_get _message) (__ul6 Applid,
struct sk_buff ** Msgp);

Parameter Comment

Applid Application identification number assigned by the CAPI_REGISTER
operation.

Msgp Pointer to the memory location where kernel-mode COMMON-ISDN-API
should place the pointer to the retrieved message.

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class Ox11xx.

Note

The message buffer pointed to by Msgp must be released with kfree skb() (see:
<linux/skbuff.h> after it has been processed by the client of kernel-mode COMMON-

ISDN-API.

152

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.17.2 Other Functions

8.17.2.1 CAPI_SET_SIGNAL

Description

The application can use this function to activate the use of a call-back function. The
signaling function can be deactivated by a CAPI_SET_SIGNAL with parameter
signal = NULL. The application is identified by parameter Applid. An additional
parameter Param is passed to the call-back function.

Function call
__ul6 (*capi_set_signal) (__ul6 Applid,
void (*Signal)(__ul6 applid, _ u32 Param),
~u32 Param);

Parameter Comment

Applid Application identification number assigned by the CAPI_REGISTER
operation.

Signal Pointer to a signal handler function that kernel-mode COMMON-ISDN-
API will call when new messages have been received and can be fetched
with a CAPI_GET_MESSAGE operation. The two parameters of the signal
handler are equal to the 1% and 3" parameter of this CAPI_SET_SIGNAL
operation.

Param This parameter will be transferred to the signal handler function without
changes.

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class OX11xx.

Note

The call-back function is called by COMMON-ISDN-API after

+ any message is queued in the application’'s message queue,
« an announced busy condition is cleared, or
+ an announced queue-full condition is cleared.

Chapter 8.17: Linux (Kernel Level) 153

8.17.2.2

154

Description

CAPI_GET_MANUFACTURER

With this operation the application determines the manufacturer identification of
kernel-mode COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to
a buffer of 64 bytes. Kernel-mode COMMON-ISDN-API copies the identification
string, coded as a zero terminated ASCII string, to this buffer.

Function call
__ul6 (*capi_get_manufacturer) (__u32 Contr,
_u8 Buf[64));
Parameter Comment
Contr Number of the controller. If 0, the manufacturer identification of the kernel
driver is given to the application.
Buf Pointer to a buffer of 64 bytes

Return Value

Return Value

Comment

0x0000

No error

All other values

Coded as described in parameter Info, class Ox11xx.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.17.2.3 CAPI_GET_VERSION

Description

With this function the application determines the version (as well as an internal
revision number) of COMMON-ISDN-API or the controller(s).

Function call
__ul6 (*capi_get version) (__u32 Contr,
struct capi_version * Verp);

Parameter Comment

Contr Number of the controller. If 0, the version of the kernel driver is given to
the application.

Verp Pointer to a buffer of data type capi_version. The buffer will not be written
in case of an error.

Return Value

Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class Ox11xx.

Chapter 8.17: Linux (Kernel Level) 155

8.17.2.4 CAPI_GET_SERIAL_NUMBER

156

Description

With this operation the application determines the (optional) serial number of kernel-
mode COMMON-ISDN-API or of the controller(s). Buf on call is a pointer to a
buffer of 8 bytes. Kernel-mode COMMON-ISDN-API copies the serial number
string to this buffer. The serial number, coded as a zero terminated ASCII string,
represents seven digit number after the function has returned.

Function call
__ul16 (*capi_get_serial) (__u32 Contr,
u8 Buf[8]);
Parameter Comment
Contr Number of the controller. If 0, the serial number of the kernel driver is
given to the application.
Buf Pointer to a buffer of 8 bytes. The buffer will not be written in case of an
error.
Return Value
Return Value Comment
0x0000 No error
All other values Coded as described in parameter Info, class OX11xx.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.17.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from COMMON-ISDN-API.
Buf contains a pointer to a data area of 64 bytes. In this buffer COMMON-ISDN-API
copies information about implemented features, number of controllers and supported
protocols. CtrINr contains the controller number (bit 0..6) for which this information is
requested. The retrieved structure format is described at the beginning of chapter 8.

Function call
__ul6 (*capi_get_profile) (__u32 Contr,
struct capi profile * Profp);

Parameter Comment

Contr Number of the controller. If 0, only the number of installed controller is
given to the application.

ProfP Pointer to a buffer of type struct capi_profile. The buffer will not be written
in case of an error.

Return Value

Return Value Comment

0x0000 No error

All other values Coded as described in parameter Info, class OX11xx.
Note

This function can be extended, so an application has to ignore unknown bits.
COMMON-ISDN-API will set every reserved field to 0. For a detailed description of
the capi_profile structure see section 4.2.2.7 of COMMON-ISDN-API Version 2.0
Part I.

Chapter 8.17: Linux (Kernel Level) 157

8.17.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine if the ISDN hardware and
necessary drivers are installed.

Function call

| u16 (*capi installed) (void);

Return Value

Return Value Comment

0x0000 COMMON-ISDN-API is installed.

All other values Coded as described in parameter Info, class Ox11xx
158 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.17.2.7 CAPI_MANUFACTURER

Description

This function can be used by an application to perform manufacturer-dependent

operations.

Function call
__ul6 (*capi_manufacturer) (unsigned int Cmd,

void *Data);
Parameter Comment
Cmd Code of a manufacturer specific command.
Data Pointer to a buffer containing the parameters of the manufacturer specific
command. The buffer is located in user memory!

Return Value

Return Value

Comment

All values

Manufacturer-dependent.

Chapter 8.17: Linux (Kernel Level)

159

160 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.18 Windows XP 32bit (Application Level)

Under the operating system Windows 2000, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library). The interface between applications and COMMON-ISDN-API is realized as a
function interface. An application can issue COMMON-ISDN-API function calls to perform COMMON-
ISDN-API operations.

The DLL providing the function interface has to be named "CAPI2032.DLL". It is a 32-bit DLL exporting 32-bit
APIENTRY type functions.

The DLL functions are exported under following names and ordinal numbers:

CAPI_MANUFACTURER (reserved) CAPI12032.99

CAPI_REGISTER CAPI2032.1
CAPI_RELEASE CAPI2032.2
CAPI_PUT_MESSAGE CAPI2032.3
CAPI_GET_MESSAGE CAPI2032.4
CAPI_WAIT_FOR_SIGNAL CAPI2032.5
CAPI_GET_MANUFACTURER CAPI2032.6
CAPI_GET_VERSION CAPI2032.7
CAPI_GET_SERIAL_NUMBER CAPI2032.8
CAPI_GET_PROFILE CAPI2032.9
CAPI_INSTALLED CAPI2032.10

These functions can be called by an application according to the DLL conventions as imported functions.

In the Windows 2000 environment, the following data types are used in defining the functional interface:

WORD 16-bit unsigned integer
DWORD 32-bit unsigned integer
PVOID Pointer to any memory location
PVOID * Pointer to a PVOID

char * Pointer to a character string

DWORD * Pointer to a 32-bit unsigned integer value

Windows XP 32bit (Application Level) 161

8.18.1 Message Operations

8.18.1.1 CAPI_REGISTER

162

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDatalen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

Function call

DWORD APIENTRY CAPI_REGISTER (DWORD MessageBufferSize,
DWORD maxLogicalConnection,
DWORD maxBDataBlocks,
DWORD maxBDatalen,
DWORD * pApplID);

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

Parameter

Comment

MessageBufferSize

Size of Message Buffer

maxLogicalConnection

Maximum number of logical connections

maxBDataBlocks

Number of data blocks available simultaneously

maxBDatalen

Maximum size of a data block

pApplID

Pointer to the location where COMMON-ISDN-API should place the as-
signed application identification number

Return Value

Return Value
0x0000

All other values

Comment

Registration successful: application identification number has been as-
signed

Coded as described in parameter Info, class 0x10xx

Windows XP 32bit (Application Level)

163

8.18.1.2 CAPI_RELEASE

Description

The application uses this operation to log off from COMMON-ISDN-API. COM-
MON-ISDN-API will release all resources that have been allocated.

The application is identified by the application identification number assigned in the
earlier CAPI_REGISTER operation.

Function call

[DWORD APIENTRY CAPI RELEASE (DWORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function
CAPI_REGISTER

Return Value

Return Value Comment

0x0000 Application successfully released

All other values Coded as described in parameter Info, class 0x11xx
164 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.18.1.3 CAPI_PUT_MESSAGE

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application identifies itself with an application identification number.

Function call

DWORD APIENTRY CAPI_PUT_MESSAGE (DWORD ApplID,
PVOID pCAPIMessage);

Parameter Comment

ApplID Application identification number assigned by the function
CAPI_REGISTER

pCAPIMessage Pointer to the message being passed to COMMON-ISDN-API

Return Value

Return Value Comment

0x0000 No error

All other values Coded as described in parameter Info, class 0x11xx
Note

When the process returns from the function call, the message memory area can be
reused by the application.

Windows XP 32bit (Application Level) 165

8.18.1.4 CAPI_GET MESSAGE

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application can only retrieve those messages intended for the stipulated appli-
cation identification number. If there is no message waiting for retrieval, the function
returns immediately with an error code.

Function call

DWORD APIENTRY CAPI_GET_MESSAGE (DWORD ApplID,
PVOID * ppCAPIMessage);

Parameter Comment

ApplID Application identification number assigned by the function
CAPI_REGISTER

ppCAPIMessage Pointer to the memory location where COMMON-ISDN-API should place
the pointer to the retrieved message

Return Value

Return Value Comment
0x0000 Successful: Message was retrieved from COMMON-I1SDN-API
All other values Coded as described in parameter Info, class 0x11xx

Note

The received message may become invalid the next time the application issues a
CAPI_GET_MESSAGE operation for the same application identification number.
This is especially important in multi-threaded applications where more than one thread
may execute CAPI_GET_MESSAGE operations. The synchronization between
threads has to be done by the application.

166 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.18.2 Other Functions

8.18.2.1 CAPI_WAIT_FOR_SIGNAL

Description

This operation is used by the application to wait for an asynchronous event from
COMMON-ISDN-API.

Function call

This function returns as soon as a message from COMMON-ISDN-API is available.

[DWORD APIENTRY CAPI WAIT FOR SIGNAL (DWORD ApplID);

Parameter Comment
ApplID Application identification number assigned by the function
CAPI_REGISTER

Return Value

Return Value Comment

0x0000 No error

All other values Coded as described in parameter Info, class 0x11xx
Note

This function also returns as soon as the application calls CAPI_RELEASE, even if
no pending COMMON-ISDN-API message is available in the COMMON-ISDN-
APl message queue. The COMMON-ISDN-API application shall not destroy the
thread while CAPI_WAIT_FOR_SIGNAL is in the blocking state.

Windows XP 32bit (Application Level) 167

8.18.2.2 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the manufacturer identification of
COMMON-ISDN-API (DLL). SzBuffer is a pointer to a buffer of 64 bytes.
COMMON-ISDN-API copies the identification string, coded as a zero-terminated
ASCII string, to this buffer.

Function call

[VOID APIENTRY CAPI GET MANUFACTURER (char * SzBuffer);

Parameter Comment
SzBuffer Pointer to a buffer of 64 bytes
168 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.182.3 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API as
well as an internal revision number.

Function call

DWORD APIENTRY CAPI_GET_VERSION (DWORD * pCAPIMajor,
DWORD * pCAPIMinor,
DWORD * pManufacturerMajor,
DWORD * pManufacturerMinor);

Parameter Comment

pCAPIMajor Pointer to a DWORD which will receive the COMMON-ISDN-API major
version number: 2

pCAPIMinor Pointer to a DWORD which will receive the COMMON-ISDN-API
minor version number: 0

pManufacturerMajor Pointer to a DWORD which will receive the manufacturer-specific major
number

pManufacturerMinor Pointer to a DWORD which will receive the manufacturer-specific minor
number

Return Value

Return Comment
0x0000 No error, version numbers have been copied.

Windows XP 32bit (Application Level) 169

8.18.2.4

170

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. SzBuffer on call is a pointer to a buffer of 8 bytes. COMMON-
ISDN-API copies the serial number string to this buffer. The serial number, coded as a
zero-terminated ASCII string of up to seven digits, can be read from the buffer after

CAPI_GET_SERIAL_NUMBER

the function has returned.

Function call

[DWORD APIENTRY CAPI GET SERIAL NUMBER (char * SzBuffer);

Parameter

Comment

SzBuffer

Pointer to a buffer of 8 bytes

Return Value

Return

Comment

0x0000

No error

SzBuffer contains the serial number in plain text in the form of a 7-digit
number. If no serial number is provided by the manufacturer, an empty
string is returned.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.18.2.5 CAPI_GET_PROFILE

Description

The application uses this function to get the capabilities from COMMON-ISDN-API.
SzBuffer contains a pointer to a data area of 64 bytes. In this buffer COMMON-
ISDN-API copies information about implemented features, the number of controllers
and supported protocols. CtrINr contains the number of the controller (bit 0..6) for
which this information is requested. The profile structure retrieved is described at the
beginning of Chapter 8.

DWORD APIENTRY CAPI_GET_PROFILE (PVOID SzBuffer,
DWORD CtrINr);

Parameter Comment

SzBuffer Pointer to a buffer of 64 bytes

CtrINr Number of Controller. If 0, only the number of installed controllers is
returned to the application.

Return Value

Return Comment

0x0000 No error

<>0 Coded as described in parameter Info, class 0x11xx
Note

This function may be extended, so the application must ignore unknown bits in the
profile structure. COMMON-ISDN-API will set every reserved field to 0.

Windows XP 32bit (Application Level) 171

8.18.2.6 CAPI_INSTALLED

Description

This function can be used by an application to determine whether the ISDN hardware
and necessary drivers are installed.

Function call

[DWORD APIENTRY CAPI INSTALLED (VOID)

Return Value

Return Comment

0x0000 COMMON-ISDN-API is installed

Any other value Coded as described in parameter Info, class 0x11xx
172 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

8.19 Windows XP 64bit (Application Level)

In the operating system Windows XP 64bit, the COMMON-ISDN-API services are provided via a DLL
(Dynamic Link Library) named “CAPI2064.DLL". It is a 64-bit DLL exporting 64-bit APIENTRY type
functions. Windows-based applications (64-bit) can use the DLL mechanism as described in Chapter 8:
Specifications for Commercial Operating Systems, Subclause 8.18: Windows XP 32bit (Application Level),
without modification.

Note: An application shall send and receive data through the 64bit DLL by using the 64bit pointer in the CAPI
messages DATA B3 REQ/DATA _B3_IND.

Windows XP 64bit (Application Level) 173

174 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.20 Windows XP (Device Driver Level)

For kernel-mode applications, the COMMON-ISDN-API 2.0 must be implemented as kernel-mode device
driver. The interface to such a kernel-mode device driver in Windows 2000 is based on I/O request packets
(IRPs), which can be sent to the driver by either kernel-mode or user-mode applications.

A CAPI20 device driver creates at least one CAPI20 device object which can be addressed by an application.
The Flags field of each device object must be ORed with DO_DIRECT _IO after creation. Each device object is
given a name for identification. The name of a CAPI20 device object is \Device\CAPI20x, where x is a
configured decimal ordinal number. The CAPI20 device object name can be used by kernel-mode applications to
send IRPs to the corresponding CAPI120 device driver.

A CAPI20 device driver may support multiple controllers. The implementation is free to create a single device
object for all supported controllers or a separate device object for each supported controller. Controller numbers
are assigned for each CAPI20 device object starting with 1.

In order to be accessible to user-mode applications, a CAPI120 device driver creates a symbolic link object for
each CAPI20 device object. The name of the symbolic link object is \DosDevices\CAPI20x, where x is the same
ordinal number used in the device object name. This allows user-mode applications to access the driver’s
COMMON-ISDN-API services by using the name WACAPI20x in a Win32 CreateFile() operation.

To ensure the correct loading order of a CAPI20 driver, the driver must be assigned to the group “CAPI20”. This
is achieved by adding the REG_SZ value entry “Group” to the driver’s service subkey in the registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\<CAPI-Driver-Service>\

DisplayName: REG_SZ: CAPI20 Driver ...
ErrorControl: REG_DWORD: ...

Group: REG_SZ: CAPI20

ImagePath: REG_SZ: ...

Start: REG_DWORD: ...

Type: REG_DWORD.: ...

The driver installation must ensure that the group CAPI20 is listed in ServiceGroupOrder immediately before the
group NDIS.

To permit unambiguous configuration of all CAPI20 device drivers, a new common subkey is created in the
Windows 2000 registry. This subkey is named CAPI20 and contains a subkey x for each CAP120x device object
created by CAPI20 device drivers. The CAPI120 subkey must be queried during the installation of a new CAPI20
device driver. If the CAPI20 subkey does not yet exist, the installation procedure must create it. For each device
object created by the new driver, a new subkey x is created with the lowest possible ordinal number: The ordinal
number for the first CAPI20 device object is 1. Thus the first CAPI20 device driver installed uses the name
\Device\CAPI201 for its first device object and the name\Device\CAP1202 for its second device object (if any),
etc. The ordinal numbers claimed by the new driver must be noted in the driver’s private configuration data.
When the driver is removed from the system, the de-installation procedure must also remove the corresponding
subkeys under the CAPI120 subkey.

HKEY_LOCAL_MACHINE\SOFTWARE\CAPI20\

Contents:

1
NumberOfControllers: REG_DWORD: <Number of Controllers supported >
Manufacturer; REG_SZ: <Manufacturer Name>
DeviceName: REG_SZ: CAPI201

Windows XP (Device Driver Level) 175

/* For each supported controller a controller subkey is created: */
A\
Channels: REG_DWORD: <Number of B-channels supported by this controller>
2\
etc.
2\ ..

Every driver that conforms to CAPI20 must be designed to work in a chain of layered drivers. Thus the driver
must not use any operation which is only legal for a highest-level driver.

Every driver that conforms to CAPI120 must be designed to be unloadable, i.e. the driver must set the entry point
of its Unload routine in the DriverObject passed to its DriverEntry routine. The Unload routine must release all
previously allocated kernel and hardware resources in order to permit an new initialization of the driver at a later
time.

Every driver that conforms to CAPI120 must handle the cancellation of IRPs.

Every driver that conforms to CAPI20 must handle the following major function codes:

IRP_MJ_CREATE

IRP_MJ_CLEANUP

IRP_MJ_CLOSE

IRP_MJ_READ

IRP_MJ_WRITE

IRP_MJ_SHUTDOWN
IRP_MJ_DEVICE_CONTROL
IRP_MJ_INTERNAL_DEVICE_CONTROL

To receive shutdown notification from the system shutdown process in a highest-level driver, the driver must call
loShutdownNatification() in its DriverEntry routine, but must ignore any error returned by this call.

Three types of IRP_MJ xxx functions are used by a user-mode application to communicate with the
COMMON-ISDN-API device: IRP_MJ_DEVICE_CONTROL, IRP_MJ_READ and IRP_MJ_WRITE.

The IRP_MJ INTERNAL_DEVICE_CONTROL function is reserved exclusively for use by kernel-mode
applications, i.e. for inter-device driver communication.

IRP_MJ_DEVICE_CONTROL is used for all CAPI20 functions except CAPI_GET_MESSAGE and
CAPI_PUT_MESSAGE.

The CAPI_GET_MESSAGE and CAPI_PUT_MESSAGE functions use IRP_MJ_READ/WRITE (user-mode
and kernel-mode applications) or IRP_MJ_INTERNAL_DEVICE_CONTROL (kernel-mode applications only).

The following DEVICE_CONTROL and INTERNAL_DEVICE CONTROL codes are defined for the
COMMON-ISDN-API functions:

*
i the common device type code for driver conforming to CAPI20

*

#{jefine FILE_DEVICE_CAPI20 0x8001

*

* DEVICE_CONTROL codes for user AND kernel-mode applications
176 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

*/
#define CAPI20_CTL_BASE 0x800

#define CAPI120_CTL_REGISTER (CAPI20_CTL_BASE+0x0001)
#define CAP120_CTL_RELEASE (CAPI20_CTL_BASE+0x0002)
#define CAPI120_CTL_GET_MANUFACTURER (CAPI20_CTL_BASE+0x0005)
#define CAPI120_CTL_GET_VERSION (CAPI20_CTL_BASE+0x0006)
#define CAPI20_CTL_GET_SERIAL (CAPI20_CTL_BASE+0x0007)
#define CAPI20_CTL_GET_PROFILE (CAPI20_CTL_BASE+0x0008)
/*

* INTERNAL_DEVICE_CONTROL codes for kernel-mode applications only
*/

#define CAPI120_CTL_PUT_MESSAGE (CAPI20_CTL_BASE+0x0003)
#define CAPI20_CTL_GET_MESSAGE (CAPI20_CTL_BASE+0x0004)
/-k

* The wrapped control codes as required by the system

*/
#define CAP120_CTL_CODE(function,method) \
CTL_CODE(FILE_DEVICE_CAPI20,function,method,FILE_ANY_ACCESS)

#define IOCTL_CAPI_REGISTER\\
CAPI20_CTL_CODE(CAPI20_CTL_REGISTER, METHOD_BUFFERED)

#define 10CTL_CAPI_RELEASE \
CAPI20_CTL_CODE(CAPI20_CTL_RELEASE, METHOD_BUFFERED)

#define I0CTL_CAPI_GET_MANUFACTURER\
CAPI20_CTL_CODE(CAPI20_CTL_GET_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_GET_VERSION\
CAPI20_CTL_CODE(CAPI20_CTL_GET_VERSION, METHOD_BUFFERED)

#define I0CTL_CAPI_GET_SERIAL \
CAPI20_CTL_CODE(CAPI20_CTL_GET_SERIAL, METHOD_BUFFERED)

#define I0CTL_CAPI_GET_PROFILE \
CAPI20_CTL_CODE(CAPI20_CTL_GET_PROFILE, METHOD_BUFFERED)

#define IOCTL_CAPI_MANUFACTURER\
CAPI20_CTL_CODE(CAPI20_CTL_MANUFACTURER, METHOD_BUFFERED)

#define IOCTL_CAPI_PUT_MESSAGE \
CAPI20_CTL_CODE(CAPI20_CTL_PUT_MESSAGE, METHOD_BUFFERED)

#define I0CTL_CAPI_GET_MESSAGE \
CAPI20_CTL_CODE(CAPI20_CTL_GET_MESSAGE, METHOD_BUFFERED)

To transfer CAPI120-specific return values from the driver to kernel or user-mode applications, the status code of
the IRP is set accordingly. Because only some IRP status codes are mapped directly to Win32 error codes (the
return codes of DeviceloControl(), ReadFile(), WriteFile()), the following status code representation for
CAPI20 errors (Info values) must be used:

Info Windows 2000 Status code Win32 Error Code

0x1001 STATUS TOO _MANY_SESSIONS ERROR _TOO_MANY_SESSIONS
0x1002 STATUS_INVALID PARAMETER ERROR_INVALID PARAMETER
0x1003 N.A.

0x1004 STATUS BUFFER _TOO SMALL ERROR_INSUFFICIENT _BUFFER
0x1005 STATUS NOT_SUPPORTED ERROR_NOT_SUPPORTED
0x1006 N.A.

Windows XP (Device Driver Level) 177

0x1007
0x1008
0x1009
0x100A
0x100B
0x1101
0x1102
0x1103
0x1104
0x1105
0x1106
0x1107
0x1108
0x1109
0x110A
0x110B

In Windows 2000, all communication between a device object and an application is associated with a file object.
For this reason, a file object pointer (or “file handle”) is used instead of the application ID to link a CAPI20
device object with a user-mode or kernel-mode application. Any application 1Ds contained in COMMON-

STATUS_NETWORK_BUSY
STATUS_INSUFFICIENT_RESOURCES
N.A.

STATUS_SERVER_DISABLED
STATUS_SERVER_NOT_DISABLED
STATUS_INVALID_HANDLE
STAUS_ILLEGAL_FUNCTION
STATUS_TOO_MANY_COMMANDS
N.A.

STATUS_DATA_OVERRUN
STATUS_INVALID_PARAMETER
STATUS_DEVICE_BUSY
STATUS_INSUFFICIENT_RESOURCES
N.A

STATUS_SERVER_DISABLED
STATUS_SERVER_NOT_DISABLED

ISDN-API messages are therefore ignored.

In the following, the interface between the application and the COMMON-ISDN-API device driver is described
by means of Win32 functions. These functions are available for user-mode applications only. The equivalent

ERROR_NETWORK_BUSY
ERROR_NOT_ENOUGH_MEMORY

ERROR_SERVER_DISABLED
ERROR_SERVER_NOT_DISABLED
ERROR_INVALID_HANDLE
ERROR_INVALID_FUNCTION
ERROR_TOO_MANY_CMDS

ERROR_I0_DEVICE
STATUS_INVALID_PARAMETER
ERROR_BUSY
ERROR_NOT_ENOUGH_MEMORY

ERROR_SERVER_DISABLED
ERROR_SERVER_NOT_DISABLED

kernel-mode functions can be found in the Windows 2000 documentation.

178

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.20.1 Message Operations

8.20.1.1 CAPI_REGISTER

Description

This is the function the application uses to announce its presence to COMMON-
ISDN-API. The application describes its needs by passing the four parameters
MessageBufferSize, maxLogicalConnection, maxBDataBlocks and maxBDatalen.

For a typical application, the amount of memory required should be calculated by the
following formula:

MessageBufferSize = 1024 + (1024 * maxLogicalConnection)

The parameter maxLogicalConnection specifies the maximum number of logical
connections this application can maintain concurrently. Any attempt by the application
to exceed the logical connection count by accepting or initiating additional
connections will result in a connection set-up failure and an error indication from
COMMON-ISDN-API.

The parameter maxBDataBlocks specifies the maximum number of received data
blocks that can be reported to the application simultaneously for each logical
connection. The number of simultaneously available data blocks has a decisive effect
on the data throughput in the system and should be between 2 and 7. At least two data
blocks must be specified.

The parameter maxBDatalen specifies the maximum size of the application data block
to be transmitted and received. Selection of a protocol that requires larger data units,
or attempts to transmit or receive larger data units, will result in an error indication
from COMMON-ISDN-API. The default value for the protocol ISO 7776 (X.75) is
128 octets. COMMON-ISDN-API is able to support at least up to 2048 octets.

[CAPI REGISTER CAPI CTL REGISTER|

Implementation

To perform the CAPI_REGISTER operation, the application must first obtain a handle
to the COMMON-ISDN-API device using the Win32 CreateFile function, then send
a CAPI_CTL_REGISTER to the COMMON-ISDN-API device. CAPI_REGISTER
passes the following data structure to the driver:

Windows XP (Device Driver Level) 179

struct capi_register_params {
WORD MessageBufferSize,
WORD maxLogicalConnection,
WORD maxBDataBlocks,
WORD maxBDatalen

%

Only one CAPI_CTL_REGISTER may be sent with a given handle before a
CAPI_CTL_RELEASE is sent. If an application program wants to register as more
than one COMMON-ISDN-API application, it must obtain several handles using
CreateFile and send one CAPI_CTL_REGISTER with each handle.

Example:

capi_handle = CreateFile("\W.\CAPI1201",
GENERIC_READ | GENERIC_WRITE,
01
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);

r.MessageBufferSize = MessageBufferSize;
r.maxLogicalConnection = maxLogicalConnection;
r.maxBDataBlocks = maxBDataBlocks;
r.maxBDataLen = maxBDatalen;

ret = DeviceloControl(capi_handle,
CAPI_CTL_REGISTER,
&f,
sizeof(struct capi_register_params),
NULL,
0,
&ret_bytes,
NULL);

180 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.20.1.2 CAPI_RELEASE

Description

The application uses this operation to log out from COMMON-ISDN-API. This
signals to COMMON-ISDN-API that all resources allocated by COMMON-ISDN-
API for the application can be released.

[CAPI RELEASE CAPI CTL RELEASE |

Implementation

A CAPI_RELEASE can be performed in one of two ways. If the same handle is to be used
again, a CAPI_CTL_RELEASE must be sent. If the handle is no longer needed, the CAPI20
device may simply be closed using CloseHandle.

Example:

ret = DeviceloControl(capi_handle,
CAPI_CTL_RELEASE,
NULL,
0,
NULL,
0,
&ret_bytes,
NULL);

or

CloseHandle(capi_handle);

Windows XP (Device Driver Level) 181

8.20.1.3 CAPI_PUT_MESSAGE

182

Description

With this operation the application transfers a message to COMMON-ISDN-API.
The application is identified by a file handle.

[CAPI PUT MESSAGE WriteFile())CAPI CTL PUT MESSAGE |

Implementation

The CAPI_PUT_MESSAGE function can be performed using either a WriteFile()
operation or an INTERNAL_DEVICE_CONTROL IRP. The
INTERNAL_DEVICE_CONTROL method is available to kernel-mode applications
only.

1. WriteFile() operation

In the WriteFile() operation, one data buffer is sent to the CAPI20 device driver. This
buffer must contain the message and, in the case of a DATA B3 _REQ message, the
associated data. The data (if applicable) must be placed in the buffer immediately
following the message.

ret = WriteFile(capi_handle,
(PVOID)msg, /* buffer for message + data */
msg_length, /* length of message + data */
&ret_bytes,
&0_write);

The WriteFile() operation returns immediately, without waiting for any network event
(in normal CAP1_PUT_MESSAGE operation).

When the WriteFile() call returns control to the application, the message buffer can be
re-used.

2. INTERNAL_DEVICE_CONTROL

Kernel-mode applications may use an INTERNAL_DEVICE_CONTROL IRP with
the I0_CONTROL code CAP|_CTL_PUT_MESSAGE for the
CAPI_PUT_MESSAGE operation. With this IRP, a pointer to the following structure
is passed to the CAPI20 device driver in Parameters.DeviceControl. Type3InputBuffer:

struct {
PVOID message;
PVOID data;

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

%

The buffer passed in the message field can be re-used by the application as soon as the
INTERNAL_DEVICE_CONTROL IRP is completed. The buffer passed in the data

field can be re-used by the application as soon as the corresponding
DATA_B3_CONF message is received.

Windows XP (Device Driver Level) 183

8.20.1.4 CAPI_GET MESSAGE

184

Description

With this operation the application retrieves a message from COMMON-ISDN-API.
The application retrieves each message associated with the specified file handle which
was used in the CAPI_REGISTER operation.

[CAPI GET MESSAGE ReadFile()/CAPI CTL_GET MESSAGE]

Implementation

The CAPI_GET_MESSAGE operation can be performed either by calling ReadFile()
or by using an INTERNAL_DEVICE_CONTROL IRP. The
INTERNAL_DEVICE_CONTROL method is available to kernel-mode applications
only.

1. ReadFile() operation

In the ReadFile() operation, one data buffer is received from the CAPI20 device
driver. This buffer contains the message and, in the case of a DATA B3 IND
message, the associated data. The data (if applicable) is located in the buffer
immediately following the message.

ret = ReadFile(capi_handle,
buffer,
buffer_size,
&ret_bytes,
&0_read);

The ReadFile() operation returns as soon as a COMMON-ISDN-API message is
available.

The size of the buffer provided by the application should be at least
MessageBufferSize + 512. If the buffer provided by the application is too small to
hold the message and the data, an error is returned and the excess data is lost.

COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

2. INTERNAL_DEVICE_CONTROL

Kernel-mode applications may use an INTERNAL_DEVICE_CONTROL IRP with
the 10_CONTROL code CAPI CTL_GET_MESSAGE for the CAPI_GET -
MESSAGE operation. With this IRP, a pointer to the following structure is passed to
the CAPI120 device in Parameters.DeviceControl. Type3inputBuffer:

struct {
PVOID message;
PVOID data;

¥

The CAPI20 device driver fills in the fields of this structure. When the
INTERNAL_DEVICE_CONTROL is completed, the message field contains a pointer
to the COMMON-ISDN-API message and, if the message is a DATA_B3_IND, the
data field contains a pointer to the associated data buffer.

The message buffer may be re-used by the CAPI20 driver as soon as the application
sends the next CAPI_CTL_GET_MESSAGE.

The data buffer may be re-used by the CAPI20 driver as soon as the application sends
a corresponding DATA B3 RESP message.

Windows XP (Device Driver Level) 185

8.20.1.5 CAPI_SET SIGNAL

There is no CAPI_SET_SIGNAL function. The asynchronous signaling of a received
message is implicit in the completion of the corresponding message retrieval
operation, whether ReadFile() or INTERNAL_DEVICE_CONTROL.

186 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.20.2 Other Functions

8.20.2.1 CAPI_GET_MANUFACTURER

Description

With this operation the application obtains the COMMON-ISDN-API manufacturer
identification. The parameter Controller (dword) contains the number of the controller
(bit 0..6) for which this information is requested. The application provides a buffer of
at least 64 bytes. COMMON-ISDN-API copies the identification, coded as a zero-
terminated ASCII string, to this buffer.

[CAPI GET MANUFACTURER CAPI CTL_GET MANUFACTURER]

Implementation

With this 10_CONTROL the manufacturer identification is read from the Common
ISDN API driver. A buffer of 64 bytes has to be provided by the application. The
manufacturer identification is returned as zero terminated ASCII string. If the size of
the incoming buffer of the io_control operation is larger or equal to sizeof (dword) the
buffer is interpreted as the parameter controller.

Windows XP (Device Driver Level) 187

8.202.2 CAPI_GET_VERSION

Description

With this function the application obtains the version of COMMON-ISDN-API, as
well as an internal revision number. The parameter Controller (dword) contains the
number of the controller (bit 0..6) for which this information is requested.

[cAPI GET VERSION CAPI CTL_GET VERSION]

Implementation

The version of the COMMON-ISDN-API is read using this I0O_CONTROL. If the size of
the incoming buffer of the io_control operation is larger or equal to sizeof (dword) the
buffer is interpreted as the parameter controller. The application must provide a buffer
with the following structure:

struct capi_version_params {
word CAPIMajor;
word CAPIMinor;
word ManufacturerMajor;
word ManufacturerMinor;

188 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

8.20.2.3 CAPI_GET SERIAL_NUMBER

Description

With this operation the application obtains the (optional) serial number of COM-
MON-ISDN-API. The parameter Controller (dword) contains the number of the
controller (bit 0..6) for which this information is requested. The application provides a
buffer of 8 bytes. COMMON-ISDN-API copies the serial number string to this
buffer. The serial number, a seven-digit number coded as a zero-terminated ASCII
string, is present in this buffer after the function has returned.

[CAPI GET SERIAL NUMBER CAPI CTL GET SERIAL NUMBER]

Implementation

The COMMON-ISDN-API serial number is read from the driver using this
IO_CONTROL. If the size of the incoming buffer of the io_control operation is larger
or equal to sizeof (dword) the buffer is interpreted as the parameter controller. The
application must provide a buffer of 8 bytes. The serial number is returned as a zero-
terminated ASCII string.

Windows XP (Device Driver Level) 189

8.202.4 CAPI_GET PROFILE

Description

The application uses this function to determine the capabilities of COMMON-ISDN-
API. The parameter Controller (dword) contains the number of the controller (bit 0..6)
for which this information is requested. The profile structure retrieved is described at
the beginning of Chapter 8.

[CAPI GET PROFILE CAPI CTL GET PROFILE]

Implementation

The COMMON-ISDN-API capabilities can be read from the driver using this
IO_CONTROL. If the size of the incoming buffer of the io_control operation is larger
or equal to sizeof (dword) the buffer is interpreted as the parameter controller. If the
size of the incoming buffer is less than sizeof (dword) or the parameter controller is
set to 0, the number of installed controller is returned.

190 COMMON-ISDN-API Version 2.0 - Part I
4™ Edition

INDEX (PART II)

CAPI_FILENO
T 00 145
CAPI_GET_MANUFACTURER
110) PR 140
LINUX KEINEI LEVEL. ... ettt ettt ettt e e e bttt e s et e e e e s st e e e s s bt e e e s btae e s sabaeessabbaeessabanesssabaneaas 154
(1Y ST D1 1RO ORR USRI 19
NetWare (CAPI_GEtMENUFACTUIET)........couiieititieieieee ettt sttt sttt se bbb et e aeese e e e beseesbesse e 86
(OS] 12T 47
(17 124 1 T 62
L0 11 TR 73
WINOAOWS 2000 ... 0.0 ceeeectieeitie ettt etee ettt st e e et e e st e e eb b e s saaeesabessatessabessabessabessabesssbessabesssbessabesssbessbeesssbessnbesssbessnresas 129
WiINAOWS 2000 DEVICE DIFIVETvveeieiie ittt ette sttt s e ee e st e s s hae s st e s sba e s sb e s sbeessbbeesbeessbbessbaessabeesseeesrbessnrenas 132
R AT TR T0 (0 LTV 75 33
T AT o (o1 L TR 95
T AT o (ol ST B LcV [USRS 120
WWINAOWS 95 VXD ...ttt ettt ettt e e ettt e e s b e e e s bt e e e s sab e e e s sabb e e e sbbt s e e sabeeesssbbesessabbasessabenesssbbanesas 106
AV AT o o1V L TSR 125
WINAOWS 98 DEVICE DIIIVET ...ttt ettt ettt e e ettt e e e bt e e e st e e e s sab e e e s eabbe s e sabbasessbbbeessabbaeessnbanesssbbaneaas 127
AV AT o (o 1TV A I TSR 91
WiINOAOWS NT DEVICE DIIVELvviicveieitie ettt eetee ettt s st s st s st s s te s s s e s s bt e e sbb e e sbeeesbbeesbesesbbeesbeeesbbeesbeessrbessneessans 93
R AT TR T0 (0N TV 3 2 168
WINOAOWS XP DEVICE DIIVETvveiceeeiieie et eetee ettt sttt s e s bte s st e s sbe e e sb b e s sbesesbessbesssbesssbessabbeesseessrbessnresas 187
CAPI_GET_MESSAGE
T)R 138
0D ST L= B] R 152
(1Y ST D1 1RO ORROTRTRTT 16
NEtWAre (CAPT_GELIMESSAQER)eeueeueenteiteite st eteeieeieetee st e sbesee st ste sttt et et e beebesbe e bt eb e e e anbeeaesbesbesbeebee e ebeseesbesne e 85
(O 1T TR 44
(O 1712411 5 5 TR 59
UN DX Lottt ettt ettt e e e et e e et e e e bt eeebeeebeeeebeesabessebeeeabeseebeeesbeseebeeeabeseebeeeabesebeseabeseebesesbesesbesessesesrenesrteeas 72
WWINOAOWS 2000 ... 0.0 ceeeeitiee ittt eetie ettt etee sttt e ettt e st e e sab e s saaessabessaeessabessabessabessabesssbessabesssbessabesebessbeesssbessnbesssbessnbesas 129
WiINAOWS 2000 DEVICE DIFIVET ...cvveiiuiieceeee ettt et ctte sttt stte s tte e st e s bte s st e s sba e s st e e sbeeesbbeesbeeesbbessbeessbbeesreessrbessnbesas 132
R AT TR T0 (01T 75 30
R AT TR T0 (oL TV L 95
L AT TR Lo (oA TV L 11V [J 117
WINAOWS 95 VXD ...ttt ettt ettt s e ettt s b e e s bt e s sbe e e eb b e e sb e e e sb e e e ebes e b eesbesebes e besebeeesbeessabesasbessrbessnbesas 103
VA AT o (oY L TSR 125
WWINAOWS 98 DEVICE DIV ...ttt ettt ettt e e ettt e s et e e e st e e e s shb e e e s eabbe s e sabbassssbbaeessabaasesasbasesssbbanesas 127
AV AT o (oMLY A I RO 91
WWINAOWS NT DEVICE DIVeviiii ittt sttt ettt e e ettt e s st e e s s b bt e s s bte e e s sbb e e s s eabassesabaessssabanesssbansessnres 93
VA AT o (01T, U 166
WWINAOWS XP DEVICE DIIVET ...ttt ettt ettt e sttt e s ettt s st e e e s eb b e e s s bt e e e s sabeaessabaeessbasasesssbanessibbaneaas 184
(O o 1 I = (0 T OSSP 9
T 00 143
0D ST L= B /] 157
1Y ST 10 1 R 22
N AT T =l (OF AN o B CT=1 1 24 (o) 1) ST 89
(O 1S 2 50
(O 171221 5 5 TSRO 65
UN DX Lttt ettt ettt et e ettt e e e b e e bt e e ebeeesbteeebeessbessebeeeabeseebeeeabeseebeeesbeseebeeeabeseebessabesesbesesbesesbeeeabeeesbenesrteeas 76
WWINAOWS 2000......cc i iietie ettt e e ettt e s st e e e s e bt ee s e sabeseessbbaeessabassessbbesessabbeessbbssessabesessabesessabbasesssbenasssbbanenas 129
WINAOWS 2000 DEVICE DIIVET ...eeeieeiie ittt ettt e ettt e s et e e st e e e s sb b e e e s eabbe e e sbbaasssabbeessabeasessabasesssbbaneaas 132
T Ao (o1 10 PR 36
R AT TR T0 (oL L 95
R AT TR Lo (oA TV L 11V [J 123
WINAOWS 95 VXD ...ttt ettt s e et e e s bt e e e bt e s sbe e e eb b e e sbe e e sb e e e ebeeebae e besesbes e beeebesesbeeesabesanbesanbessntesas 109
R AT AT T0 0NV L 125

Index (Part I1) 191

WiINOAOWS 98 DEVICE DIFIVET ...t etie ettt sttt sttt st s e s sab e s s bt e e s bt e s sbee e sbbeesbeeesbbessbeessbbeesseessrbessnbenas 127

RTAT AT To (0N TVE 3N 1 91
WiINAOWS NT DEVICE DIIVELvviicveieitie ittt eetee et et s st s et s st e s st e s s st e e s bt e e sbb e e sbeeesbbeesbesesbbessbesssbbeesbeessrbessabessrns 93
R AT TR T0 (0N TV 2 171
WINAOWS XP DEVICE DIIVETvvviceeieieie ettt ettt sttt s e st e s sb e e sbe e e sbee s sbesssbessbesssbesssbessabbeesseesssbessnresas 190
CAPI_GET_SERIAL_NUMBER
{310 TR 142
{10 D ST LTI =] U 156
(1Y ST D1 1RO ORRTURRTRTT 21
NetWare (CAPI_GetSerialNUMDET)oouiiiiiie ittt bbb 88
(O 1T TSROSO 49
(17 123 1 T 64
L 11 TSR 75
WWINOAOWS 2000 ... 0.0 ceeeeeeiee ittt e ettt ette ettt ste e ettt e st e e st b e s saaeesabessaeessabessstessabessabesssbessabesssbessabesebessbeesssbesssbesssbessnbenas 129
WiINAOWS 2000 DEVICE DIFIVET ...cvveiiuiie ittt ettt ste sttt stte e st e sbte s st e e sba e s sb e s sbeessbbeesbeeesbbessbeessbbessseessrbessnbesas 132
R AT AT T0 (0TI 75 35
R AT TR T0 (0N L 95
T T o (ol ST B cV [ST RTT 122
WWINAOWS 95 VXD ...ttt ettt ettt e s ettt e e s b e e e s bt e e e s eabe e e e s st beessabbe s e s sabeaesssbbesessabeasessabenesssbbanesas 108
VA AT o o1V L TSRS 125
WINAOWS 98 DEVICE DIIIVET ...ttt ettt ettt e e ettt e e et e s e st e e e s sab e e e s sabbe s e sabbassssbbaeessabbasesssbanesssbbaneaas 127
AV AT o (o 1TV A I RO 91
WWINAOWS NT DEVICE DIV ...ttt ettt ettt ettt e e e ettt e s st e e s s b bt e e s bta e e s sbb e e s s eabassesabanssssabaeesssbansessnrns 93
R AT TR T0 (0TI 2 170
WINOAOWS XP DEVICE DIIVETvveecveieitie ettt ettt s bt st s s te s s rte s sbt e s sbe e e sbbe s sbesssbessbesssbesssbessasbeesseessrbessnresas 189
CAPI_GET_VERSION
T)RR 141
I 0D ST L= I /] R 155
LY ST 10 1 R 20
N A Tl (OF AN o B CT= AV =T 6] o]) ST PR 87
(O 1T TSRO 48
(O 17241 5 5 TR 63
L8] N1 OO ORR TR 74
WWINAOWS 2000......cccceeiieiietie ettt e e s ettt e e s st e e e s bt es s e sabeseessbbaeessabassessbbeeessabaeessbbessssabesessbeeessabbasessabenasssbbanesas 129
WiINAOWS 2000 DEVICE DIFIVET ...cvveeieiie ittt et ctte st s e s tte e st e s s bte s st e e sba e s sb e s sbeeesbbeesbeeesbbessbeessbbessbeessrbessabesas 132
L AT AT T0 (0TI 75 34
R AT TR T0 (oL L 95
R AT TR Lo (oA TV LT 11V [J 121
WINAOWS 95 VXD ...ttt ettt e et et e s bt e e e bt e e sbe e s eb b e e sbe e e sbeeeebe s e b eeeebeeebesebesebeeesbeeesabesasbessrbessnbesas 107
R AT TR T0 (0N TV 125
WINAOWS 98 DEVICE DIIIVET ...ttt ettt ettt ettt e ettt e s e bt e e e st e e e s sab e e e s eabbe s e sabbassssbbaeessabbasesasbanesssbbaneaas 127
AV AT o (o1 iV N A I RO 91
WWINAOWS NT DEVICE DIV ...ttt ettt ettt e e s ettt e s st e e s s b bt e e s bas e e s sbb e e s s eabassesabaesessabaeesssbansesanrns 93
WVINAOWS XP ..ttt ettt ettt e ettt e e ettt e e sttt e e s eh b e e e s eabee s e sabeeeesshbeeeseabbssesabbassssbbeeessabbasesssbenessibbaneaas 169
WWINAOWS XP DEVICE DIIVET ...ttt ettt ettt ettt e ettt s st e e e s eb b e e e s bt it e s s sabeaessabaeessbesasessabanessibbaneaas 188
CAPI_INSTALLED
T 00 144
0D ST L= B /] R 158
(O 1S 2 51
WINOAOWS 2000 ... 0.0 ceeeeeeiieieee ettt etee e ette sttt e et te e sae e e et b e s saa e e sabessatessabessabesssbessabesssbesaabesssbassabesebessbeessabessnbesssbessnbenas 129
WiINAOWS 2000 DEVICE DIFIVET ...cvveeieiie ittt ettt ste sttt stte et e s s ate s st e s sba e s sbb e e sbeessbbe e sbeeesbbessbeessbbeesbeessrbessaresas 132
R AT TR T0 (0TI 75 37
T AT o (o1 L TR 95
RV AT o o1V L TSR 125
WWINAOWS 98 DEVICE DIIIVET ...ttt ettt ettt e ettt e s et e e e s bt e e e s shb e e e s aabte s e sabbassssbbeeessabbasessnbanesssbbaneaas 127
AV AT o (o 1YLV A I R OTRRTTRR 91
WWINAOWS NT DEVICE DIVeviiii ittt ettt ettt ettt e e e ettt e s st e e s sttt e e s abta e e s shb e e s s eabassesabaeesssabaeesssbansesssrns 93
R AT TR T0 (0TI 2 172
CAPI_MANUFACTURER
0D ST L= B /] R 159
1Y ST 10 1 O 23
192 COMMON-ISDN-API Version 2.0 - Part II

4™ Edition

WINOAOWS 2000 ... 0.0 ceeeeeeiie it eetie ettt ett e ste e et e e st eeetb e s saae s sabessatessabessabessabessabesssbessabesssbassabesesbessbeessabesssbesssbessnbenas 129

R AT TR T0 (0L L 95
WINAOWS 95 VXD ...ttt ettt ettt s e et e e s bt e e s b e e sbe e s eb e e e sbe e e sb e e e ebe e e b es e beeebes e bessbesesbeeesabeeasbessrbessnbesas 110
R AT TR T0 0NV 125
RTAT AT To (0N TVE 3N 1 91
CAPI_PUT_MESSAGE
{10 TR 137
LINUX KEINEI LEVEL. ... vttt ettt ettt e e ettt e e s et e e e s ab e e e s s bt e e e s baae e s sabaeessabbaeessabenesssbbeneaas 151
(1Y ST D1 LTS ORR USRI 15
NEtWAre (CAPT_PULIMESSAGE) ... e vt reeeieeuieieeteste sttt sttt et bbbt et e e e b e besbesbesbe e bt e b e e neesbesbesbesbeebeeneenee s 84
(O 1T 12T 43
(17 123 1 T 58
L 1N TR 71
WWINOAOWS 200000 ceeeeeeiie ittt ettt cte ettt stte e ettt e st e e et b e s st e e sabessateesabessabessabessabesssbessabesssbessabesssbessbeesssbeessbesssbessnrenas 129
WiINAOWS 2000 DEVICE DIFIVET ...cvvieieiie ittt ettt ste ettt s e st te s bte s st e s sbe e s sb e s sbtessbbe s sbeessbbessbeeesbbessseessrbessnresas 132
R AT AT T0 (0TI 75 29
R AT TR T0 (0N L 95
T AT o (ol ST B CV [ST 116
WWINAOWS 95 VXD ...ttt ettt ettt e ettt e sttt e e s b e e e s b bt e e s sabe e e e s b be e e sabbt s e s sabeeesssbbeeessabeasessabenesssbbanesas 102
VA AT o o1V L TSRS 125
WINAOWS 98 DEVICE DIIIVET ...ttt ettt ettt e ettt e s e bt e e e st e e e s sab e e e s sabts s e sbbassssbbaeessabbasssasbanesssbbaneaas 127
AV AT o (o 1TV A I SRS 91
WWINAOWS NT DEVICE DIVeviiiiieeie ettt ettt ettt e e ettt e s st e e s e b bt e e s bta e e s sbb e e s s eabassesabaessssabaeesasbensesssrns 93
R AT TR T0 (0N TV 2 165
WINAOWS XP DEVICE DIIVETvviiceeeeitie ettt ettt sttt st s e st e s sab e s sbe e s sb e e s sbesesbessbesssbesssbessabbessseessrbessnbesas 182
CAPI_REGISTER
T)R 134
0D ST L= I /] R 148
LY ST 10 1O UR 12
NEIWAIE (CAPT_REGISLEL)....ei ettt ettt bttt e e bt b e bt b e et e n e nbeeb e s b e bt ese e b e nbesbesbeane e 80
(O 1T TSRS 40
(O 17221 5 5 TP 55
UN DX sttt ettt ettt ettt e e e b e e bt e s ebeeesbteeebeeeabessebeeeabeeeebeeeabeseebeeeabeseebeeeabeseebeseabesesbesesbasessesebeeesrenesrteeas 68
WWINAOWS 2000......ccceeeeiieiietie ettt e e ettt e e s st e e e s e bt te s e sabaeeessbbaeessabaseessbbeaesssbbesssbbssessabesassbeeessnbbasessabanesssbbanesas 129
WiINAOWS 2000 DEVICE DIFIVETvveeieiiecetee ettt ctte sttt e e e st e s s bte s st be e sba e s sb e e sba e s sbbeesbeessbbessbeessbbessbeeesrbessnbesas 132
L AT TR T0 (01T 75 26
R AT TR T0 (oL L 95
L AT TR Lo (oA TV LT 11V [J 113
WINOAOWS 95 VXD ...ttt sttt s e ettt e s s bt e s s he e e sbb e s sht e e sbb e s sbaeesbbe s sbeeesbeeesbeessbeessabesssbasanbessrbesabenesns 99
R AT TR T0 0NV 125
WWINAOWS 98 DEVICE DIV ...ttt ettt ettt e ettt e s et e e s et e e e s sab e e e s aabts s e sabbaaessbbaeessabbasesssbanesssbbaneaas 127
AV AT o (o 1YLV A I RO 91
WWINAOWS NT DEVICE DIVeviiii ittt ettt ettt ettt e e ettt e e s st e e s st bt e e sbta e s s sbb e e s seabassesabaessssabaeessrbansessnrns 93
T AT o (01T, SRR 162
WWINAOWS XP DEVICE DIIVET ...ttt ettt ettt e ettt e ettt s st e e e s eb e e s s bt e e e s sabeaessabaeessbasasesssbanesssbbanesas 179
CAPI_RELEASE
T 00 136
0D ST L= I /] R 150
1Y ST 10 1R 14
N AT T =l (OF AN o J oY [=T: S SRS 83
(O 157 2 42
(17 123 4 1 57
UN DX Lottt ettt ettt e ettt e e e bt e e bt e e ebeeesbeeeebeeeabessebeeeabeeeebeeesbe s e ebeeeabeseebeseabeseebeseabasesbeeesbesesbeseabeeesrenesrteeas 70
WWINAOWS 2000......ccceeeiieiiteie ettt e e ettt e e st e e e s atee s e sabaseessbbaeessabassesbbeeessabbeessbbesessabesassbesesanbbasessabeneessbbanesas 129
WINAOWS 2000 DEVICE DIIVET ...eceieeiie ittt ettt ettt e ettt e e s et e e st a e e e s shb e e s s sabbe s e sbbaaessbbbeessabeasesssbnnessbbanesas 132
VA AT o (oA 10 TR 28
T AT o (oA L TR 95
L AT TR Lo (oA TV L 11V [J 115
WINAOWS 95 VXD ...ttt ettt ettt ettt e b e s b e e s bt e e s b e e ebt e e sbe e e sbeeeebee e b eesbesebesebessbeessbeeesabesanbessrbessnbenas 101
R AT TR T0 (0N TV 125
WiINAOWS 98 DEVICE DIFIVET v..vviiieie ittt sttt ettt s s st e s st e e s aa e e sb b e s sbee s sbbessbeessbbessbeeesbbessbeessrbessnbesas 127

Index (Part I1) 193

R TAT AT To (0N TVE 3N 1 91

WiINAOWS NT DEVICE DIIVELueciviiiieiieiie ittt ettt ettt ete e ete e be e testaestaesbeesbeebesabesbseebeebeeabessbessbestaesreesbeesreennas 93
WVINAOWS XP ...ttt ettt s b et et e et e e be e ebe e ebeeabeeabestsesteesbeesbeeabesasesaseabsebeenbeenbessbestaesbeesbeeabeebeanreans 164
WiINAOWS XP DEVICE DIIVELveiiveiiveiie ittt ettt ettt ete et este e s beesbe e ste s besaeesbeesbeenbesabesbsesbeesbessbeesbeesbeebeanreans 181
CAPI_SET_SIGNAL
LINUX KEBINEI LEVEL...veiviiieii ettt ettt ettt be et e et e et estb e s te e s be e s beebeeateenbeenbesbtesbeesteesbens 153
Y ST L 1T 17
[0S SRRSO 45
(O ST 7 2] 5 1 TS UORRPRORRP 60
WiINAOWS 2000 DEVICE DIFIVETuveiiriiiiee ittt ettt ettt et e ete e e ebe e e be e s sbeeeebee s sbaesbeeesbeeesbteesbeesareessbeesnreeas 132
WVINOOWS B.X .ttt itee ettt ettt e ettt s e e st e e etteesabe e sabeesbbeesaseesbbeesheeesbbeeebeeesbbeeebeeesbseebeeessbeeaabeesabeesnbessnbeesaresanns 31
WVINAOWS 95 ittt ettt ettt ettt e b e e be et e et e et b e e tbesbaesbeesbeesbeeabeeabeeabesbseebeesbeebeebeeabeesbeesbesseesteesbeeabeenras 95
WINAOWS 95 DEVIO......uiiiviiitiiitiee ettt ettt st s b e st e e st e e ste s ate s bt e ebbeebeeebeebeesbeeseesaeesbestaesbeesbeesbeebeanreans 119
WINAOWS 95 VXD ..c.viiiviiitecie ettt sttt ettt st be e be et e e et e ebtesbeesbeesbeesbesaeesasesbeeabeaabeenbesbsesbeesbaesbeesbeesbeebeenreans 104
WVINAOWS 98ttt ettt ettt et et e e bt e e bt e e be e ebe e s be e st e sbeesbeesbeeabeenbeeabeasbesbeesbeesbesaeesbaesbeesbeesbeenbeanreans 125
WiINAOWS 98 DEVICE DIIVELuviiiiiiieiitee ittt ettt ettt ete e ebe et este e s teesbe e sbe e ebesatesaseebeeabeesbeesbesasesbaesbeesbeesbeebeanreans 127
WiINAOWS NT DEVICE DIIVELuvciviiiieiiie i it et ettt ettt ete e ebe e beetestaesbaesbeesbeebesabesbseabeebeeabessbessbestaesraesbeesreennas 93
WINAOWS XP DEVICE DIIIVETvviecuieiitie ettt et ettt ettt e e et e stbe e s tee e st e e sbaeesbaeeebeeebeeebeesatbeesareesnbeesnreeas 186
CAPI_WAIT_FOR_MESSAGE
[T [0 SRS PSR UPRRTRR 139
CAPI_WAIT_FOR_SIGNAL
WINAOWS 200000 cueeeeuieeiie e ettt ettt cte e eteeetbe e sbeestbeesbeesabeesabeesabesaabesaabeeanbeeasbeeanbesssbeeanbessbeeasbessabeesnreeasbeesreeas 129
WVINAOWS 95 ittt ettt ettt e ettt e b e et e e e be e s abeeeabeeesbeeeabeesabeeaabeessbeeaabeeaabeeaabeeasbeeaabeesabeeanteesrbeennreesees 95
WVINAOWS 98ttt ettt ettt et et e et e e bt e ebe e e be e beesbe e st e sbeesbeesbeeabeenbeeabeabbesbeesbeesbesseestaesbaesbeeabeebeenreans 125
WVINAOWS INT ettt ettt st e st e e e beete s abesaeeebe e ebeeabeesbeetbestaesbeesbeesbeeabeeaseaaseebseabsebeesbeesbeesbesneesneenaes 91
WVINAOWS XP ...ttt ettt st te et e e b e e bt e ebe e ebeeabeeabestaesbeesbeesbeeabesasesaeeabsebeenbeenbessbestaesbessbeeabeebeanreans 167
194 COMMON-ISDN-API Version 2.0 - Part Il

4™ Edition

	8	SPECIFICATIONS FOR COMMERCIAL OPERATING SYSTEMS	7
	8	Specifications for Commercial Operating Systems
	CAPI_GET_PROFILE
	8.1	MS-DOS
	8.1.1	Message Operations
	8.1.1.1	CAPI_REGISTER
	8.1.1.2	CAPI_RELEASE
	8.1.1.3	CAPI_PUT_MESSAGE
	8.1.1.4	CAPI_GET_MESSAGE

	8.1.2	Other Functions
	8.1.2.1	CAPI_SET_SIGNAL
	8.1.2.2	CAPI_GET_MANUFACTURER
	8.1.2.3	CAPI_GET_VERSION
	8.1.2.4.	CAPI_GET_SERIAL_NUMBER
	8.1.2.5	CAPI_GET_PROFILE
	8.1.2.6	CAPI_MANUFACTURER

	8.2	Windows 3.x (Application Level)
	8.2.1	Message Operations
	8.2.1.1	CAPI_REGISTER
	8.2.1.2	CAPI_RELEASE
	8.2.1.3	CAPI_PUT_MESSAGE
	8.2.1.4	CAPI_GET_MESSAGE

	8.2.2	Other Functions
	8.2.2.1	CAPI_SET_SIGNAL
	8.2.2.2	CAPI_GET_MANUFACTURER
	8.2.2.3	CAPI_GET_VERSION
	8.2.2.4	CAPI_GET_SERIAL_NUMBER
	8.2.2.5	CAPI_GET_PROFILE
	8.2.2.6	CAPI_INSTALLED

	8.3	OS/2 (Application Level)
	8.3.1	Message Operations
	8.3.1.1	CAPI_REGISTER
	8.3.1.2	CAPI_RELEASE
	8.3.1.3	CAPI_PUT_MESSAGE
	8.3.1.4	CAPI_GET_MESSAGE

	8.3.2	Other Functions
	8.3.2.1	CAPI_SET_SIGNAL
	8.3.2.2	CAPI_GET_MANUFACTURER
	8.3.2.3	CAPI_GET_VERSION
	8.3.2.4	CAPI_GET_SERIAL_NUMBER
	8.3.2.5	CAPI_GET_PROFILE
	8.3.2.6	CAPI_INSTALLED

	8.4	OS/2 (Device Driver Level)
	8.4.1	Message Operations
	8.4.1.1	CAPI_REGISTER
	8.4.1.2	CAPI_RELEASE
	8.4.1.3	CAPI_PUT_MESSAGE
	8.4.1.4	CAPI_GET_MESSAGE

	8.4.2	Other Functions
	8.4.2.1	CAPI_SET_SIGNAL
	8.4.2.2	CAPI_GET_MANUFACTURER
	8.4.2.3	CAPI_GET_VERSION
	8.4.2.4	CAPI_GET_SERIAL_NUMBER
	8.4.2.5	CAPI_GET_PROFILE

	8.5	UNIX
	8.5.1	Message Operations
	8.5.1.1	CAPI_REGISTER
	8.5.1.2	CAPI_RELEASE
	8.5.1.3	CAPI_PUT_MESSAGE
	8.5.1.4	CAPI_GET_MESSAGE

	8.5.2	Other Functions
	8.5.2.1	CAPI_GET_MANUFACTURER
	8.5.2.2	CAPI_GET_VERSION
	8.5.2.3	CAPI_GET_SERIAL_NUMBER
	8.5.2.4	CAPI_GET_PROFILE

	8.6	NetWare
	8.6.1	Message Operations
	8.6.1.1	CAPI_Register
	CAPI_ReceiveNotify
	8.6.1.2	CAPI_Release
	8.6.1.3	CAPI_PutMessage
	8.6.1.4	CAPI_GetMessage

	8.6.2	Other Functions
	8.6.2.1	CAPI_GetManufacturer
	8.6.2.2	CAPI_GetVersion
	8.6.2.3	CAPI_GetSerialNumber
	8.6.2.4	CAPI_GetProfile

	8.7	Windows NT (Application Level)
	8.8	Windows NT (Device Driver Level)
	8.9	Windows 95 (Application Level)
	8.9.1	DOS-based Applications
	8.9.2	Windows 3.x-based Applications (16-bit)
	8.9.3	Windows 95-based Applications (32-bit)

	8.10	Windows 95 (Device Driver Level)
	8.10.1	Message Operations
	8.10.1.1	CAPI_REGISTER
	8.10.1.2	CAPI_RELEASE
	8.10.1.3	CAPI_PUT_MESSAGE
	8.10.1.4	CAPI_GET_MESSAGE

	8.10.2	Other Functions
	8.10.2.1	CAPI_SET_SIGNAL
	8.10.2.2	CAPI_GET_MANUFACTURER
	8.10.2.3	CAPI_GET_VERSION
	8.10.2.4	CAPI_GET_SERIAL_NUMBER
	8.10.2.5	CAPI_GET_PROFILE
	8.10.2.6	CAPI_MANUFACTURER

	8.11	Windows 95 DeviceIoControl
	8.11.1	Message Operations
	8.11.1.1	CAPI_REGISTER
	8.11.1.2	CAPI_RELEASE
	8.11.1.3	CAPI_PUT_MESSAGE
	8.11.1.4	CAPI_GET_MESSAGE
	8.11.1.5	CAPI_SET_SIGNAL

	8.11.2	Other Functions
	8.11.2.1	CAPI_GET_MANUFACTURER
	8.11.2.2	CAPI_GET_VERSION
	8.11.2.3	CAPI_GET_SERIAL_NUMBER
	8.11.2.4	CAPI_GET_PROFILE

	8.12	Windows 98 (Application Level)
	8.12.1	DOS-based Applications
	8.12.2	Windows 3.x-based Applications (16-bit)
	8.12.3	Win32-based Applications (32-bit)

	8.13	Windows 98 (Device Driver Level)
	Windows 95-based Virtual Device Driver (VxD)
	8.13.2	Win32 Driver Model-based Device Driver (WDM)

	8.14	Windows 2000 (Application Level)
	8.15	Windows 2000 (Device Driver Level)
	8.16	Linux
	8.16.1	Message Operations
	8.16.1.1	CAPI_REGISTER
	8.16.1.2	CAPI_RELEASE
	8.16.1.3	CAPI_PUT_MESSAGE
	8.16.1.4	CAPI_GET_MESSAGE

	8.16.2	Other Functions
	8.16.2.1	CAPI_WAIT_FOR_MESSAGE
	8.16.2.2	CAPI_GET_MANUFACTURER
	8.16.2.3	CAPI_GET_VERSION
	8.16.2.4	CAPI_GET_SERIAL_NUMBER
	8.16.2.5	CAPI_GET_PROFILE
	8.16.2.6	CAPI_INSTALLED
	8.16.2.7	CAPI_FILENO

	8.17	Linux (Kernel Level)
	8.17.1	Message Operations
	8.17.1.1	CAPI_REGISTER
	8.17.1.2	CAPI_RELEASE
	8.17.1.3	CAPI_PUT_MESSAGE
	8.17.1.4	CAPI_GET_MESSAGE

	8.17.2	Other Functions
	8.17.2.1	CAPI_SET_SIGNAL
	8.17.2.2	CAPI_GET_MANUFACTURER
	8.17.2.3	CAPI_GET_VERSION
	8.17.2.4	CAPI_GET_SERIAL_NUMBER
	8.17.2.5	CAPI_GET_PROFILE
	8.17.2.6	CAPI_INSTALLED
	8.17.2.7	CAPI_MANUFACTURER

	8.18	Windows XP 32bit (Application Level)
	8.18.1	Message Operations
	8.18.1.1	CAPI_REGISTER
	8.18.1.2	CAPI_RELEASE
	8.18.1.3	CAPI_PUT_MESSAGE
	8.18.1.4	CAPI_GET_MESSAGE

	8.18.2	Other Functions
	8.18.2.1	CAPI_WAIT_FOR_SIGNAL
	8.18.2.2	CAPI_GET_MANUFACTURER
	8.18.2.3	CAPI_GET_VERSION
	8.18.2.4	CAPI_GET_SERIAL_NUMBER
	8.18.2.5	CAPI_GET_PROFILE
	8.18.2.6	CAPI_INSTALLED

	8
	8.19	Windows XP 64bit (Application Level)
	8.20	Windows XP (Device Driver Level)
	8.20.1	Message Operations
	8.20.1.1	CAPI_REGISTER
	8.20.1.2	CAPI_RELEASE
	8.20.1.3	CAPI_PUT_MESSAGE
	8.20.1.4	CAPI_GET_MESSAGE
	8.20.1.5	CAPI_SET_SIGNAL

	8.20.2	Other Functions
	8.20.2.1	CAPI_GET_MANUFACTURER
	8.20.2.2	CAPI_GET_VERSION
	8.20.2.3	CAPI_GET_SERIAL_NUMBER
	8.20.2.4	CAPI_GET_PROFILE

	Index (Part II)

